Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
FEMS Microbiol Ecol ; 100(5)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38632042

ABSTRACT

Dissolved inorganic carbon has been hypothesized to stimulate microbial chemoautotrophic activity as a biological sink in the carbon cycle of deep subsurface environments. Here, we tested this hypothesis using quantitative DNA stable isotope probing of metagenome-assembled genomes (MAGs) at multiple 13C-labeled bicarbonate concentrations in hydrothermal fluids from a 750-m deep subsurface aquifer in the Biga Peninsula (Turkey). The diversity of microbial populations assimilating 13C-labeled bicarbonate was significantly different at higher bicarbonate concentrations, and could be linked to four separate carbon-fixation pathways encoded within 13C-labeled MAGs. Microbial populations encoding the Calvin-Benson-Bassham cycle had the highest contribution to carbon fixation across all bicarbonate concentrations tested, spanning 1-10 mM. However, out of all the active carbon-fixation pathways detected, MAGs affiliated with the phylum Aquificae encoding the reverse tricarboxylic acid (rTCA) pathway were the only microbial populations that exhibited an increased 13C-bicarbonate assimilation under increasing bicarbonate concentrations. Our study provides the first experimental data supporting predictions that increased bicarbonate concentrations may promote chemoautotrophy via the rTCA cycle and its biological sink for deep subsurface inorganic carbon.


Subject(s)
Bicarbonates , Carbon Cycle , Carbon Isotopes , Metagenome , Microbiota , Bicarbonates/metabolism , Carbon Isotopes/metabolism , Bacteria/genetics , Bacteria/metabolism , Bacteria/classification , Carbon/metabolism , Hydrothermal Vents/microbiology , Groundwater/microbiology , Chemoautotrophic Growth , Archaea/genetics , Archaea/metabolism
2.
Front Microbiol ; 14: 1063139, 2023.
Article in English | MEDLINE | ID: mdl-36910224

ABSTRACT

Terrestrial hydrothermal springs and aquifers are excellent sites to study microbial biogeography because of their high physicochemical heterogeneity across relatively limited geographic regions. In this study, we performed 16S rRNA gene sequencing and metagenomic analyses of the microbial diversity of 11 different geothermal aquifers and springs across the tectonically active Biga Peninsula (Turkey). Across geothermal settings ranging in temperature from 43 to 79°C, one of the most highly represented groups in both 16S rRNA gene and metagenomic datasets was affiliated with the uncultivated phylum "Candidatus Bipolaricaulota" (former "Ca. Acetothermia" and OP1 division). The highest relative abundance of "Ca. Bipolaricaulota" was observed in a 68°C geothermal brine sediment, where it dominated the microbial community, representing 91% of all detectable 16S rRNA genes. Correlation analysis of "Ca. Bipolaricaulota" operational taxonomic units (OTUs) with physicochemical parameters indicated that salinity was the strongest environmental factor measured associated with the distribution of this novel group in geothermal fluids. Correspondingly, analysis of 23 metagenome-assembled genomes (MAGs) revealed two distinct groups of "Ca. Bipolaricaulota" MAGs based on the differences in carbon metabolism: one group encoding the bacterial Wood-Ljungdahl pathway (WLP) for H2 dependent CO2 fixation is selected for at lower salinities, and a second heterotrophic clade that lacks the WLP that was selected for under hypersaline conditions in the geothermal brine sediment. In conclusion, our results highlight that the biogeography of "Ca. Bipolaricaulota" taxa is strongly correlated with salinity in hydrothermal ecosystems, which coincides with key differences in carbon acquisition strategies. The exceptionally high relative abundance of apparently heterotrophic representatives of this novel candidate Phylum in geothermal brine sediment observed here may help to guide future enrichment experiments to obtain representatives in pure culture.

3.
Appl Environ Microbiol ; 83(12)2017 06 15.
Article in English | MEDLINE | ID: mdl-28389534

ABSTRACT

The surface waters at the ultramafic ophiolitic outcrop in Chimaera, Turkey, are characterized by high pH values and high metal levels due to the percolation of fluids through areas of active serpentinization. We describe the influence of the liquid chemistry, mineralogy, and H2 and CH4 levels on the bacterial community structure in a semidry, exposed, ultramafic environment. The bacterial and archaeal community structures were monitored using Illumina sequencing targeting the 16S rRNA gene. At all sampling points, four phyla, Proteobacteria, Actinobacteria, Chloroflexi, and Acidobacteria, accounted for the majority of taxa. Members of the Chloroflexi phylum dominated low-diversity sites, whereas Proteobacteria dominated high-diversity sites. Methane, nitrogen, iron, and hydrogen oxidizers were detected as well as archaea and metal-resistant bacteria.IMPORTANCE Our study is a comprehensive microbial investigation of the Chimaera ophiolite. DNA has been extracted from 16 sites in the area and has been studied from microbial and geochemical points of view. We describe a microbial community structure that is dependent on terrestrial, serpentinization-driven abiotic H2, which is poorly studied due to the rarity of these environments on Earth.


Subject(s)
Archaea/isolation & purification , Bacteria/isolation & purification , Biodiversity , Fresh Water/microbiology , Geologic Sediments/microbiology , Archaea/classification , Archaea/genetics , Archaea/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Fresh Water/chemistry , Hydrogen/metabolism , Metals/metabolism , Methane/metabolism , Phylogeny , Turkey
SELECTION OF CITATIONS
SEARCH DETAIL
...