Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 221
Filter
1.
Nat Commun ; 15(1): 2178, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38467639

ABSTRACT

Immune checkpoint inhibitors targeting PD-1/L1 have modest efficacy in hepatocellular carcinoma as single agents. Targeting membranous phosphatidylserine may induce pro-inflammatory and -immune stimulating effects that enhance immunotherapy activity. This hypothesis was tested in a single-arm phase 2 trial evaluating frontline bavituximab, a phosphatidylserine targeting antibody, plus pembrolizumab (anti-PD-1) in patients with unresectable hepatocellular carcinoma (NCT03519997). The primary endpoint was investigator-assessed objective response rate among evaluable patients, and secondary end points included progression-free survival, incidence of adverse events, overall survival, and duration of response. Among 28 evaluable patients, the confirmed response rate was 32.1%, which met the pre-specified endpoint, and the median progression-free survival was 6.3 months (95% CI, 1.3-11.3 months). Treatment related-adverse events of any grade occurred in 45.7% of patients, with grade 3 or greater adverse events in 14.3% of patients. Adverse events of any cause were observed in 33 patients (94.3%), with grade 3 or greater adverse events in 11 patients (31.4%). Prespecified exploratory analyses of baseline tumor specimens showed that a depletion of B cells, and the presence of fibrotic tissue and expression of immune checkpoints in stroma was associated with tumor response. These results suggest that targeting phosphatidylserine may lead to synergistic effects with PD-1 blockade without increasing toxicity rates, and future studies on this therapeutic strategy may be guided by biomarkers characterizing the pre-treatment tumor microenvironment.


Subject(s)
Antibodies, Monoclonal, Humanized , Antibodies, Monoclonal , Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/pathology , Phosphatidylserines , Programmed Cell Death 1 Receptor , Liver Neoplasms/pathology , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Tumor Microenvironment
2.
JAMA ; 331(11): 920-929, 2024 03 19.
Article in English | MEDLINE | ID: mdl-38502074

ABSTRACT

Importance: Aspirin may reduce severity of metabolic dysfunction-associated steatotic liver disease (MASLD) and lower the incidence of end-stage liver disease and hepatocellular carcinoma, in patients with MASLD. However, the effect of aspirin on MASLD is unknown. Objective: To test whether low-dose aspirin reduces liver fat content, compared with placebo, in adults with MASLD. Design, Setting, and Participants: This 6-month, phase 2, randomized, double-blind, placebo-controlled clinical trial was conducted at a single hospital in Boston, Massachusetts. Participants were aged 18 to 70 years with established MASLD without cirrhosis. Enrollment occurred between August 20, 2019, and July 19, 2022, with final follow-up on February 23, 2023. Interventions: Participants were randomized (1:1) to receive either once-daily aspirin, 81 mg (n = 40) or identical placebo pills (n = 40) for 6 months. Main Outcomes and Measures: The primary end point was mean absolute change in hepatic fat content, measured by proton magnetic resonance spectroscopy (MRS) at 6-month follow-up. The 4 key secondary outcomes included mean percentage change in hepatic fat content by MRS, the proportion achieving at least 30% reduction in hepatic fat, and the mean absolute and relative reductions in hepatic fat content, measured by magnetic resonance imaging proton density fat fraction (MRI-PDFF). Analyses adjusted for the baseline value of the corresponding outcome. Minimal clinically important differences for study outcomes were not prespecified. Results: Among 80 randomized participants (mean age, 48 years; 44 [55%] women; mean hepatic fat content, 35% [indicating moderate steatosis]), 71 (89%) completed 6-month follow-up. The mean absolute change in hepatic fat content by MRS was -6.6% with aspirin vs 3.6% with placebo (difference, -10.2% [95% CI, -27.7% to -2.6%]; P = .009). Compared with placebo, aspirin treatment significantly reduced relative hepatic fat content (-8.8 vs 30.0 percentage points; mean difference, -38.8 percentage points [95% CI, -66.7 to -10.8]; P = .007), increased the proportion of patients with 30% or greater relative reduction in hepatic fat (42.5% vs 12.5%; mean difference, 30.0% [95% CI, 11.6% to 48.4%]; P = .006), reduced absolute hepatic fat content by MRI-PDFF (-2.7% vs 0.9%; mean difference, -3.7% [95% CI, -6.1% to -1.2%]; P = .004]), and reduced relative hepatic fat content by MRI-PDFF (-11.7 vs 15.7 percentage points; mean difference, -27.3 percentage points [95% CI, -45.2 to -9.4]; P = .003). Thirteen participants (32.5%) in each group experienced an adverse event, most commonly upper respiratory tract infections (10.0% in each group) or arthralgias (5.0% for aspirin vs 7.5% for placebo). One participant randomized to aspirin (2.5%) experienced drug-related heartburn. Conclusions and Relevance: In this preliminary randomized clinical trial of patients with MASLD, 6 months of daily low-dose aspirin significantly reduced hepatic fat quantity compared with placebo. Further study in a larger sample size is necessary to confirm these findings. Trial Registration: ClinicalTrials.gov Identifier: NCT04031729.


Subject(s)
Anti-Inflammatory Agents , Aspirin , Fatty Liver , Liver , Adolescent , Adult , Aged , Female , Humans , Male , Middle Aged , Young Adult , Anti-Inflammatory Agents/adverse effects , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Aspirin/adverse effects , Aspirin/pharmacology , Aspirin/therapeutic use , Carcinoma, Hepatocellular/etiology , Carcinoma, Hepatocellular/prevention & control , Double-Blind Method , End Stage Liver Disease/etiology , End Stage Liver Disease/prevention & control , Fatty Liver/complications , Fatty Liver/diagnostic imaging , Fatty Liver/drug therapy , Fatty Liver/metabolism , Follow-Up Studies , Liver/diagnostic imaging , Liver/drug effects , Liver Cirrhosis , Liver Neoplasms/etiology , Liver Neoplasms/prevention & control , Proton Magnetic Resonance Spectroscopy
4.
Hepatol Int ; 18(2): 610-622, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37864726

ABSTRACT

BACKGROUND & AIMS: Combination immunotherapy refers to the use of immune checkpoint inhibitors (ICI) and molecular-targeted agents (MTA), which have recently been approved for the treatment of advanced hepatocellular carcinoma (HCC). Owing to its relatively low antitumor effect (up to 30%), sequential therapy following ICIs treatment is required in patients with HCC. This study aimed to determine the impact of MTAs on the tumor immune microenvironment (TIME). METHODS: We established immune syngeneic orthotopic HCC mouse models using Hep-55.1C and Hep-53.4, and treated them with MTAs (lenvatinib, sorafenib, regorafenib, cabozantinib, and DC101 as anti-vascular endothelial growth factor receptor-2 antibodies, and AZD4547 as a fibroblast growth factor receptor (FGFR)-1/2/3/4 inhibitor) for 2 weeks. Subsequently, alterations in the TIME caused by MTAs were evaluated using immunohistochemistry (antibodies for CD3, CD8, Foxp3, Granzyme B, Arginase-1, NK1.1, F4/80, CD11c, PD-1, and PD-L1). We conducted RNA-seq analysis using lenvatinib- and AZD4547-treated tumors. To confirm the clinical relevance of these findings, we analyzed the transcriptome data of human HCC cells (MHCC-97H) treated with various concentrations of lenvatinib for 24 h using RNA-seq data from the Gene Expression Omnibus database. RESULTS: The number of Foxp3- and F4/80-positive cells in the TIME was decreased in many MTAs. Cabozantinib increased the numbers in NK1.1-, Granzyme B, and CD11c-positive cells. Lenvatinib and AZD4547 increased the number of CD8, Granzyme B, and PD-L1-positive cells. Gene ontology enrichment analysis revealed that lipid metabolism-related genes were downregulated by lenvatinib and AZD4547. In total, 161 genes downregulated by FGFR inhibition in rodent models overlapped with those downregulated by lenvatinib in human HCC cells. CONCLUSIONS: In this study, we showed that cabozantinib activated the innate immune system, and lenvatinib and AZD4547, which commonly inhibit FGFR signaling, altered TIME to a hot immune state by downregulating lipid metabolism-related genes. These findings support the therapeutic use of combination immunotherapies.


Subject(s)
Anilides , Antineoplastic Agents , Benzamides , Carcinoma, Hepatocellular , Liver Neoplasms , Phenylurea Compounds , Piperazines , Pyrazoles , Pyridines , Quinolines , Animals , Mice , Humans , Carcinoma, Hepatocellular/pathology , B7-H1 Antigen , Granzymes/pharmacology , Granzymes/therapeutic use , Liver Neoplasms/pathology , Fibroblast Growth Factors/pharmacology , Fibroblast Growth Factors/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Immunosuppressive Agents/therapeutic use , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Forkhead Transcription Factors/pharmacology , Forkhead Transcription Factors/therapeutic use , Tumor Microenvironment
5.
Cancer Discov ; 13(12): 2584-2609, 2023 12 12.
Article in English | MEDLINE | ID: mdl-37676710

ABSTRACT

Signaling rewiring allows tumors to survive therapy. Here we show that the decrease of the master regulator microphthalmia transcription factor (MITF) in lethal prostate cancer unleashes eukaryotic initiation factor 3B (eIF3B)-dependent translation reprogramming of key mRNAs conferring resistance to androgen deprivation therapy (ADT) and promoting immune evasion. Mechanistically, MITF represses through direct promoter binding eIF3B, which in turn regulates the translation of specific mRNAs. Genome-wide eIF3B enhanced cross-linking immunoprecipitation sequencing (eCLIP-seq) showed specialized binding to a UC-rich motif present in subsets of 5' untranslated regions. Indeed, translation of the androgen receptor and major histocompatibility complex I (MHC-I) through this motif is sensitive to eIF3B amount. Notably, pharmacologic targeting of eIF3B-dependent translation in preclinical models sensitizes prostate cancer to ADT and anti-PD-1 therapy. These findings uncover a hidden connection between transcriptional and translational rewiring promoting therapy-refractory lethal prostate cancer and provide a druggable mechanism that may transcend into effective combined therapeutic strategies. SIGNIFICANCE: Our study shows that specialized eIF3B-dependent translation of specific mRNAs released upon downregulation of the master transcription factor MITF confers castration resistance and immune evasion in lethal prostate cancer. Pharmacologic targeting of this mechanism delays castration resistance and increases immune-checkpoint efficacy. This article is featured in Selected Articles from This Issue, p. 2489.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Prostatic Neoplasms , Male , Humans , Transcription Factors , Androgen Antagonists/pharmacology , Androgen Antagonists/therapeutic use , Immune Evasion , Receptors, Androgen/genetics , Castration , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/pathology
6.
Hepatology ; 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37300379

ABSTRACT

Liver cancer, primarily HCC, exhibits highly heterogeneous histological and molecular aberrations across tumors and within individual tumor nodules. Such intertumor and intratumor heterogeneities may lead to diversity in the natural history of disease progression and various clinical disparities across the patients. Recently developed multimodality, single-cell, and spatial omics profiling technologies have enabled interrogation of the intertumor/intratumor heterogeneity in the cancer cells and the tumor immune microenvironment. These features may influence the natural history and efficacy of emerging therapies targeting novel molecular and immune pathways, some of which had been deemed undruggable. Thus, comprehensive characterization of the heterogeneities at various levels may facilitate the discovery of biomarkers that enable personalized and rational treatment decisions, and optimize treatment efficacy while minimizing the risk of adverse effects. Such companion biomarkers will also refine HCC treatment algorithms across disease stages for cost-effective patient management by optimizing the allocation of limited medical resources. Despite this promise, the complexity of the intertumor/intratumor heterogeneity and ever-expanding inventory of therapeutic agents and regimens have made clinical evaluation and translation of biomarkers increasingly challenging. To address this issue, novel clinical trial designs have been proposed and incorporated into recent studies. In this review, we discuss the latest findings in the molecular and immune landscape of HCC for their potential and utility as biomarkers, the framework of evaluation and clinical application of predictive/prognostic biomarkers, and ongoing biomarker-guided therapeutic clinical trials. These new developments may revolutionize patient care and substantially impact the still dismal HCC mortality.

8.
Cell ; 186(9): 1968-1984.e20, 2023 04 27.
Article in English | MEDLINE | ID: mdl-37040760

ABSTRACT

Somatic mutations in nonmalignant tissues accumulate with age and injury, but whether these mutations are adaptive on the cellular or organismal levels is unclear. To interrogate genes in human metabolic disease, we performed lineage tracing in mice harboring somatic mosaicism subjected to nonalcoholic steatohepatitis (NASH). Proof-of-concept studies with mosaic loss of Mboat7, a membrane lipid acyltransferase, showed that increased steatosis accelerated clonal disappearance. Next, we induced pooled mosaicism in 63 known NASH genes, allowing us to trace mutant clones side by side. This in vivo tracing platform, which we coined MOSAICS, selected for mutations that ameliorate lipotoxicity, including mutant genes identified in human NASH. To prioritize new genes, additional screening of 472 candidates identified 23 somatic perturbations that promoted clonal expansion. In validation studies, liver-wide deletion of Tbx3, Bcl6, or Smyd2 resulted in protection against hepatic steatosis. Selection for clonal fitness in mouse and human livers identifies pathways that regulate metabolic disease.


Subject(s)
Metabolic Diseases , Non-alcoholic Fatty Liver Disease , Animals , Humans , Male , Mice , Histone-Lysine N-Methyltransferase/genetics , Liver/metabolism , Mosaicism , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism
9.
Genes (Basel) ; 14(4)2023 04 16.
Article in English | MEDLINE | ID: mdl-37107679

ABSTRACT

Polyploidy, the duplication of the entire genome within a single cell, is a significant characteristic of cells in many tissues, including the liver. The quantification of hepatic ploidy typically relies on flow cytometry and immunofluorescence (IF) imaging, which are not widely available in clinical settings due to high financial and time costs. To improve accessibility for clinical samples, we developed a computational algorithm to quantify hepatic ploidy using hematoxylin-eosin (H&E) histopathology images, which are commonly obtained during routine clinical practice. Our algorithm uses a deep learning model to first segment and classify different types of cell nuclei in H&E images. It then determines cellular ploidy based on the relative distance between identified hepatocyte nuclei and determines nuclear ploidy using a fitted Gaussian mixture model. The algorithm can establish the total number of hepatocytes and their detailed ploidy information in a region of interest (ROI) on H&E images. This is the first successful attempt to automate ploidy analysis on H&E images. Our algorithm is expected to serve as an important tool for studying the role of polyploidy in human liver disease.


Subject(s)
Deep Learning , Humans , Eosine Yellowish-(YS) , Hematoxylin , Liver , Ploidies , Polyploidy
10.
Cancer Med ; 12(9): 10175-10186, 2023 05.
Article in English | MEDLINE | ID: mdl-37078924

ABSTRACT

BACKGROUND: Successful treatment of hepatitis C reduces liver inflammation and fibrosis; however, patients remain at risk of developing hepatocellular carcinoma (HCC). AIMS: To identify risk factors for new-onset HCC in patients cured of hepatitis C. METHODS: Imaging, histological, and clinical data on patients whose first HCC was diagnosed >12 months of post-SVR were analyzed. Histology of 20 nontumor tissues was analyzed in a blinded manner using the Knodel/Ishak/HAI system for necroinflammation and fibrosis/cirrhosis stage and the Brunt system for steatosis/steatohepatitis. Factors associated with post-SVR HCC were identified by comparison with HALT-C participants who did not develop post-SVR HCC. RESULTS: Hepatocellular carcinoma was diagnosed in 54 patients (45 M/9F), a median of 6 years of post-SVR [interquartile range (IQR) =1.4-10y] at a median age of 61 years (IQR, 59-67). Approximately one-third lacked cirrhosis, and only 11% had steatosis on imaging. The majority (60%) had no steatosis/steatohepatitis in histopathology. The median HAI score was 3 (1.25-4), indicating mild necroinflammation. In a multivariable logistic regression model, post-SVR HCC was positively associated with non-Caucasian race (p = 0.03), smoking (p = 0.03), age > 60 years at HCC diagnosis (p = 0.03), albumin<3.5 g/dL (p = 0.02), AST/ALT>1 (p = 0.05), and platelets <100 × 103 cells/µL (p < 0.001). Alpha fetoprotein ≥4.75 ng/mL had 90% specificity and 71% sensitivity for HCC occurrence. Noncirrhotic patients had larger tumors (p = 0.002) and a higher prevalence of vascular invasion (p = 0.016) than cirrhotic patients. CONCLUSIONS: One-third of patients with post-SVR HCC did not have liver cirrhosis; most had no steatosis/steatohepatitis. Hepatocellular carcinomas were more advanced in noncirrhotic patients. Results support AFP as a promising marker of post-SVR HCC risk.


Subject(s)
Carcinoma, Hepatocellular , Fatty Liver , Hepatitis C, Chronic , Hepatitis C , Liver Neoplasms , Humans , Middle Aged , Aged , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/epidemiology , Carcinoma, Hepatocellular/etiology , Hepatitis C, Chronic/complications , Hepatitis C, Chronic/drug therapy , Liver Neoplasms/diagnosis , Liver Neoplasms/epidemiology , Liver Neoplasms/etiology , Antiviral Agents/therapeutic use , Sustained Virologic Response , Risk Factors , Hepatitis C/complications , Liver Cirrhosis/complications , Fatty Liver/complications , Fatty Liver/drug therapy , Hepacivirus
11.
Mol Cancer Ther ; 22(6): 737-750, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37070671

ABSTRACT

A select group of patients with hepatocellular carcinomas (HCC) benefit from surgical, radiologic, and systemic therapies that include a combination of anti-angiogenic and immune-checkpoint inhibitors. However, because HCC is generally asymptomatic in its early stages, this not only leads to late diagnosis, but also to therapy resistance. The nucleoside analogue 6-thio-dG (THIO) is a first-in-class telomerase-mediated telomere-targeting anticancer agent. In telomerase expressing cancer cells, THIO is converted into the corresponding 5'-triphosphate, which is efficiently incorporated into telomeres by telomerase, activating telomere damage responses and apoptotic pathways. Here, we show how THIO is effective in controlling tumor growth and, when combined with immune checkpoint inhibitors, is even more effective in a T-cell-dependent manner. We also show telomere stress induced by THIO increases both innate sensing and adaptive antitumor immunity in HCC. Importantly, the extracellular high-mobility group box 1 protein acts as a prototypical endogenous DAMP (Damage Associated Molecular Pattern) in eliciting adaptive immunity by THIO. These results provide a strong rationale for combining telomere-targeted therapy with immunotherapy.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Telomerase , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Telomerase/genetics , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Telomere/genetics , Adaptive Immunity
12.
bioRxiv ; 2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36993727

ABSTRACT

Somatic mutations in non-malignant tissues accumulate with age and insult, but whether these mutations are adaptive on the cellular or organismal levels is unclear. To interrogate mutations found in human metabolic disease, we performed lineage tracing in mice harboring somatic mosaicism subjected to non-alcoholic steatohepatitis (NASH). Proof-of-concept studies with mosaic loss of Mboat7 , a membrane lipid acyltransferase, showed that increased steatosis accelerated clonal disappearance. Next, we induced pooled mosaicism in 63 known NASH genes, allowing us to trace mutant clones side-by-side. This in vivo tracing platform, which we coined MOSAICS, selected for mutations that ameliorate lipotoxicity, including mutant genes identified in human NASH. To prioritize new genes, additional screening of 472 candidates identified 23 somatic perturbations that promoted clonal expansion. In validation studies, liver-wide deletion of Bcl6, Tbx3, or Smyd2 resulted in protection against NASH. Selection for clonal fitness in mouse and human livers identifies pathways that regulate metabolic disease. Highlights: Mosaic Mboat7 mutations that increase lipotoxicity lead to clonal disappearance in NASH. In vivo screening can identify genes that alter hepatocyte fitness in NASH. Mosaic Gpam mutations are positively selected due to reduced lipogenesis. In vivo screening of transcription factors and epifactors identified new therapeutic targets in NASH.

13.
Gastroenterology ; 164(7): 1279-1292, 2023 06.
Article in English | MEDLINE | ID: mdl-36894036

ABSTRACT

BACKGROUND & AIMS: Despite recent progress, long-term survival remains low for hepatocellular carcinoma (HCC). The most effective HCC therapies target the tumor immune microenvironment (TIME), and there are almost no therapies that directly target tumor cells. Here, we investigated the regulation and function of tumor cell-expressed Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) in HCC. METHODS: HCC was induced in mice by Sleeping Beauty-mediated expression of MET, CTNNB1-S45Y, or TAZ-S89A, or by diethylnitrosamine plus CCl4. Hepatocellular TAZ and YAP were deleted in floxed mice via adeno-associated virus serotype 8-mediated expression of Cre. TAZ target genes were identified from RNA sequencing, confirmed by chromatin immunoprecipitation, and evaluated in a clustered regularly interspaced short palindromic repeats interference (CRISPRi) screen. TEA domain transcription factors (TEADs), anillin (ANLN), Kif23, and programmed cell death protein ligand 1 were knocked down by guide RNAs in dead clustered regularly interspaced short palindromic repeats-associated protein 9 (dCas9) knock-in mice. RESULTS: YAP and TAZ were up-regulated in murine and human HCC, but only deletion of TAZ consistently decreased HCC growth and mortality. Conversely, overexpression of activated TAZ was sufficient to trigger HCC. TAZ expression in HCC was regulated by cholesterol synthesis, as demonstrated by pharmacologic or genetic inhibition of 3-hydroxy-3-methylglutaryl- coenzyme A reductase (HMGCR), farnesyl pyrophosphate synthase, farnesyl-diphosphate farnesyltransferase 1 (FDFT1), or sterol regulatory element-binding protein 2 (SREBP2). TAZ- and MET/CTNNB1-S45Y-driven HCC required the expression of TEAD2 and, to a lesser extent, TEAD4. Accordingly, TEAD2 displayed the most profound effect on survival in patients with HCC. TAZ and TEAD2 promoted HCC via increased tumor cell proliferation, mediated by TAZ target genes ANLN and kinesin family member 23 (KIF23). Therapeutic targeting of HCC, using pan-TEAD inhibitors or the combination of a statin with sorafenib or anti-programmed cell death protein 1, decreased tumor growth. CONCLUSIONS: Our results suggest the cholesterol-TAZ-TEAD2-ANLN/KIF23 pathway as a mediator of HCC proliferation and tumor cell-intrinsic therapeutic target that could be synergistically combined with TIME-targeted therapies.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Humans , Mice , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Microtubule-Associated Proteins/metabolism , TEA Domain Transcription Factors , Transcription Factors/genetics , Transcription Factors/metabolism , Tumor Microenvironment , YAP-Signaling Proteins/metabolism
14.
J Hepatol ; 79(1): 226-239, 2023 07.
Article in English | MEDLINE | ID: mdl-36854345

ABSTRACT

Major research efforts in liver cancer have been devoted to increasing the efficacy and effectiveness of surveillance for hepatocellular carcinoma (HCC). As with other cancers, surveillance programmes aim to detect tumours at an early stage, facilitate curative-intent treatment, and reduce cancer-related mortality. HCC surveillance is supported by a large randomised-controlled trial in patients with chronic HBV infection and several cohort studies in cirrhosis; however, effectiveness in clinical practice is limited by several barriers, including inadequate risk stratification, underuse of surveillance, and suboptimal accuracy of screening tests. There are several proposed strategies to address these limitations, including risk stratification algorithms and biomarkers to better identity at-risk individuals, interventions to increase surveillance, and emerging imaging- and blood-based surveillance tests with improved sensitivity and specificity for early HCC detection. Beyond clinical validation, data are needed to establish clinical utility, i.e. increased early tumour detection and reduced HCC-related mortality. If successful, these data could facilitate a precision screening paradigm in which surveillance strategies are tailored to individual HCC risk to maximise overall surveillance value. However, practical and logistical considerations must be considered when designing and implementing these validation efforts. To address these issues, ILCA (the International Liver Cancer Association) adjourned a single topic workshop on HCC risk stratification and surveillance in June 2022. Herein, we present a white paper on these topics, including the status of the field, ongoing research efforts, and barriers to the translation of emerging strategies.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Liver Neoplasms/diagnosis , Liver Neoplasms/etiology , Liver Neoplasms/epidemiology , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/etiology , Carcinoma, Hepatocellular/epidemiology , Early Detection of Cancer , Liver Cirrhosis , Risk Assessment
15.
Immunity ; 56(1): 58-77.e11, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36521495

ABSTRACT

Obesity-induced chronic liver inflammation is a hallmark of nonalcoholic steatohepatitis (NASH)-an aggressive form of nonalcoholic fatty liver disease. However, it remains unclear how such a low-grade, yet persistent, inflammation is sustained in the liver. Here, we show that the macrophage phagocytic receptor TREM2, induced by hepatocyte-derived sphingosine-1-phosphate, was required for efferocytosis of lipid-laden apoptotic hepatocytes and thereby maintained liver immune homeostasis. However, prolonged hypernutrition led to the production of proinflammatory cytokines TNF and IL-1ß in the liver to induce TREM2 shedding through ADAM17-dependent proteolytic cleavage. Loss of TREM2 resulted in aberrant accumulation of dying hepatocytes, thereby further augmenting proinflammatory cytokine production. This ultimately precipitated a vicious cycle that licensed chronic inflammation to drive simple steatosis transition to NASH. Therefore, impaired macrophage efferocytosis is a previously unrecognized key pathogenic event that enables chronic liver inflammation in obesity. Blocking TREM2 cleavage to restore efferocytosis may represent an effective strategy to treat NASH.


Subject(s)
Non-alcoholic Fatty Liver Disease , Overnutrition , Humans , Non-alcoholic Fatty Liver Disease/pathology , Overnutrition/pathology , Liver/pathology , Inflammation/pathology , Obesity/pathology , Membrane Glycoproteins , Receptors, Immunologic
17.
Hepatology ; 78(1): 319-362, 2023 07 01.
Article in English | MEDLINE | ID: mdl-36082510

ABSTRACT

Hepatocellular carcinoma (HCC) mortality remains high primarily due to late diagnosis as a consequence of failed early detection. Professional societies recommend semi-annual HCC screening in at-risk patients with chronic liver disease to increase the likelihood of curative treatment receipt and improve survival. However, recent dynamic shift of HCC etiologies from viral to metabolic liver diseases has significantly increased the potential target population for the screening, whereas annual incidence rate has become substantially lower. Thus, with the contemporary HCC etiologies, the traditional screening approach might not be practical and cost-effective. HCC screening consists of (i) definition of rational at-risk population, and subsequent (ii) repeated application of early detection tests to the population at regular intervals. The suboptimal performance of the currently available HCC screening tests highlights an urgent need for new modalities and strategies to improve early HCC detection. In this review, we overview recent developments of clinical, molecular, and imaging-based tools to address the current challenge, and discuss conceptual framework and approaches of their clinical translation and implementation. These encouraging progresses are expected to transform the current "one-size-fits-all" HCC screening into individualized precision approaches to early HCC detection and ultimately improve the poor HCC prognosis in the foreseeable future.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/etiology , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Biomarkers , Early Detection of Cancer , Risk Assessment
18.
J Hepatol ; 78(2): 343-355, 2023 02.
Article in English | MEDLINE | ID: mdl-36309131

ABSTRACT

BACKGROUND & AIMS: Despite recent approvals, the response to treatment and prognosis of patients with advanced hepatocellular carcinoma (HCC) remain poor. Claudin-1 (CLDN1) is a membrane protein that is expressed at tight junctions, but it can also be exposed non-junctionally, such as on the basolateral membrane of the human hepatocyte. While CLDN1 within tight junctions is well characterized, the role of non-junctional CLDN1 and its role as a therapeutic target in HCC remains unexplored. METHODS: Using humanized monoclonal antibodies (mAbs) specifically targeting the extracellular loop of human non-junctional CLDN1 and a large series of patient-derived cell-based and animal model systems we aimed to investigate the role of CLDN1 as a therapeutic target for HCC. RESULTS: Targeting non-junctional CLDN1 markedly suppressed tumor growth and invasion in cell line-based models of HCC and patient-derived 3D ex vivo models. Moreover, the robust effect on tumor growth was confirmed in vivo in a large series of cell line-derived xenograft and patient-derived xenograft mouse models. Mechanistic studies, including single-cell RNA sequencing of multicellular patient HCC tumorspheres, suggested that CLDN1 regulates tumor stemness, metabolism, oncogenic signaling and perturbs the tumor immune microenvironment. CONCLUSIONS: Our results provide the rationale for targeting CLDN1 in HCC and pave the way for the clinical development of CLDN1-specific mAbs for the treatment of advanced HCC. IMPACT AND IMPLICATIONS: Hepatocellular carcinoma (HCC) is associated with high mortality and unsatisfactory treatment options. Herein, we identified the cell surface protein Claudin-1 as a treatment target for advanced HCC. Monoclonal antibodies targeting Claudin-1 inhibit tumor growth in patient-derived ex vivo and in vivo models by modulating signaling, cell stemness and the tumor immune microenvironment. Given the differentiated mechanism of action, the identification of Claudin-1 as a novel therapeutic target for HCC provides an opportunity to break the plateau of limited treatment response. The results of this preclinical study pave the way for the clinical development of Claudin-1-specific antibodies for the treatment of advanced HCC. It is therefore of key impact for physicians, scientists and drug developers in the field of liver cancer and gastrointestinal oncology.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Animals , Mice , Carcinoma, Hepatocellular/genetics , Claudin-1/genetics , Liver Neoplasms/genetics , Carcinogens , Tumor Microenvironment , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Cell Line, Tumor
19.
bioRxiv ; 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38187541

ABSTRACT

In spot-based spatial transcriptomics, spots that are of the same size and printed at the fixed location cannot precisely capture the actual randomly located single cells, therefore failing to profile the transcriptome at the single-cell level. The current studies primarily focused on enhancing the spot resolution in size via computational imputation or technical improvement, however, they largely overlooked that single-cell resolution, i.e., resolution in cellular or even smaller size, does not equal single-cell level. Using both real and simulated spatial transcriptomics data, we demonstrated that even the high-resolution spatial transcriptomics still has a large number of spots partially covering multiple cells simultaneously, revealing the intrinsic non-single-cell level of spot-based spatial transcriptomics regardless of spot size. To this end, we present STIE, an EM algorithm that aligns the spatial transcriptome to its matched histology image-based nuclear morphology and recovers missing cells from up to ~70% gap area between spots via the nuclear morphological similarity and neighborhood information, thereby achieving the real single-cell level and whole-slide scale deconvolution/convolution and clustering for both low- and high-resolution spots. On both real and simulation spatial transcriptomics data, STIE characterizes the cell-type specific gene expression variation and demonstrates the outperforming concordance with the single-cell RNAseq-derived cell type transcriptomic signatures compared to the other spot- and subspot-level methods. Furthermore, STIE enabled us to gain novel insights that failed to be revealed by the existing methods due to the lack of single-cell level, for instance, lower actual spot resolution than its reported spot size, the additional contribution of cellular morphology to cell typing beyond transcriptome, unbiased evaluation of cell type colocalization, superior power of high-resolution spot in distinguishing nuanced cell types, and spatially resolved cell-cell interactions at the single-cell level other than spot level. The STIE code is publicly available as an R package at https://github.com/zhushijia/STIE.

20.
Sci Transl Med ; 14(676): eabj4221, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36542691

ABSTRACT

Tissue fibrosis is a key driver of end-stage organ failure and cancer, overall accounting for up to 45% of deaths in developed countries. There is a large unmet medical need for antifibrotic therapies. Claudin-1 (CLDN1) is a member of the tight junction protein family. Although the role of CLDN1 incorporated in tight junctions is well established, the function of nonjunctional CLDN1 (njCLDN1) is largely unknown. Using highly specific monoclonal antibodies targeting a conformation-dependent epitope of exposed njCLDN1, we show in patient-derived liver three-dimensional fibrosis and human liver chimeric mouse models that CLDN1 is a mediator and target for liver fibrosis. Targeting CLDN1 reverted inflammation-induced hepatocyte profibrogenic signaling and cell fate and suppressed the myofibroblast differentiation of hepatic stellate cells. Safety studies of a fully humanized antibody in nonhuman primates did not reveal any serious adverse events even at high steady-state concentrations. Our results provide preclinical proof of concept for CLDN1-specific monoclonal antibodies for the treatment of advanced liver fibrosis and cancer prevention. Antifibrotic effects in lung and kidney fibrosis models further indicate a role of CLDN1 as a therapeutic target for tissue fibrosis across organs. In conclusion, our data pave the way for further therapeutic exploration of CLDN1-targeting therapies for fibrotic diseases in patients.


Subject(s)
Antibodies, Monoclonal , Cell Plasticity , Animals , Mice , Humans , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Claudin-1 , Liver Cirrhosis/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...