Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Animals (Basel) ; 13(11)2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37889787

ABSTRACT

Enteric methane emission is the main source of greenhouse gas contribution from dairy cattle. Therefore, it is essential to evaluate drivers and develop more accurate predictive models for such emissions. In this study, we built a large and intercontinental experimental dataset to: (1) explain the effect of enteric methane emission yield (g methane/kg diet intake) and feed conversion (kg diet intake/kg milk yield) on enteric methane emission intensity (g methane/kg milk yield); (2) develop six models for predicting enteric methane emissions (g/cow/day) using animal, diet, and dry matter intake as inputs; and to (3) compare these 6 models with 43 models from the literature. Feed conversion contributed more to enteric methane emission (EME) intensity than EME yield. Increasing the milk yield reduced EME intensity, due more to feed conversion enhancement rather than EME yield. Our models predicted methane emissions better than most external models, with the exception of only two other models which had similar adequacy. Improved productivity of dairy cows reduces emission intensity by enhancing feed conversion. Improvement in feed conversion should be prioritized for reducing methane emissions in dairy cattle systems.

2.
Animals (Basel) ; 10(8)2020 Aug 10.
Article in English | MEDLINE | ID: mdl-32785150

ABSTRACT

Economic development, international food and feed demand, and government policies have converted Brazil's natural ecosystems into agricultural land. The Integrated Farm System Model (IFSM) was evaluated using production, economic, and weather data collected on two cooperating farms in the Legal Amazon and Cerrado biomes in the Midwest state of Mato Grosso, Brazil. Three sustainable agricultural intensification strategies, namely grain supplementation, pasture re-seeding, and pasture fertilization were simulated in IFSM with double the beef cattle stocking density compared to extensive grazing. Livestock dry matter consumption simulated in IFSM was similar for pasture grazing estimates and actual feed consumed by beef cattle on the two collaborating farms. Grain supplementation best balanced beef production and profitability with lower carbon footprint compared to extensive grazing, followed by pasture fertilization and pasture re-seeding. However, pasture re-seeding and fertilization had greater use of water and energy and more nitrogen losses. Human edible livestock feed use was greatest for grain supplementation compared to other modeled systems. While grain supplementation appears more favorable economically and environmentally, greater use of human edible livestock feed may compete with future human food needs. Pasture intensification had greater human edible feed conversion efficiency, but its greater natural resource use may be challenging.

SELECTION OF CITATIONS
SEARCH DETAIL
...