Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nagoya J Med Sci ; 74(3-4): 261-71, 2012 Aug.
Article in English | MEDLINE | ID: mdl-23092099

ABSTRACT

Cytokine-dependent cell lines have been used to analyze the cytokine-induced cellular signaling and the mechanism of oncogenesis. In the current study, we analyzed MOTN-1 and PLT-2 cell lines established from different stages of a T-cell large granular lymphocyte leukemia patient (Daibata et al. 2004). MOTN-1 is IL-2-dependent derived from the chronic phase, whereas IL-2-independent PLT-2 is from the aggressive and terminal stage. They shared considerable chromosome abnormalities and the pattern of T-cell receptor rearrangement, presuming that the cytokine independence of PLT-2 was due to the additive genetic abnormality. Besides IL-2, IL-15 supported MOTN-1 cell growth, because these receptors share beta- and gamma-subunits. IL-2 activated ERK, AKT and STAT pathway of MOTN-1. STAT3 pathway of PLT-2 was also activated by IL-2, suggesting intact IL-2 induces signal transduction of PLT-2. However, ERK1/2 but not AKT, was continuously activated in PLT-2, consistent with the increased Ras-activity of PLT-2. Sequence analysis revealed KRAS G12A mutation but not NRAS and HRAS mutation of PLT-2 but not MOTN-1. Another signaling molecule affecting Ras-signaling pathway, SHP2, which has been frequently mutated in juvenile myelomonocytic leukemia (JMML), did not show mutation. Moreover, MEK inhibitor, PD98059, as well as farnesylation inhibitor inhibited PLT-2 cell growth. Using NIH3T3 and MOTN-1, ERK activation, increased cell proliferation and survival by KRAS G12A were shown, suggesting the important role of KRAS G12A in IL-2-independent growth of PLT-2. Taken together, KRAS G12A is important for IL-2-independent growth of PLT-2 cells and suggests the possibility of involvement of KRAS mutation with disease progression.


Subject(s)
Interleukin-2/pharmacology , Leukemia, Large Granular Lymphocytic/metabolism , Proto-Oncogene Proteins/genetics , ras Proteins/genetics , Calcium-Calmodulin-Dependent Protein Kinases/antagonists & inhibitors , Cell Line, Tumor , Cell Proliferation/drug effects , Flavonoids/pharmacology , Humans , Interleukin-15/pharmacology , Leukemia, Large Granular Lymphocytic/genetics , Mutation , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism
2.
J Biochem ; 151(6): 599-610, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22496486

ABSTRACT

Effects of all-trans retinoic acid (ATRA) on sphingomyelinase expression were examined using MCF-7 (ATRA-sensitive) and MDA-MB-231 (ATRA-resistant) breast cancer cells. Increased NSMase activity, NSMase2 mRNA and protein were observed in ATRA-treated MCF-7 but not in ATRA-treated MDA-MB-231. Increased NSMase2 mRNA of ATRA-treated MCF-7 was mostly due to enhanced transcription. Promoter analysis revealed the important 5'-promoter region of NSMase2 between -148 and -42 bp containing three Sp1 sites but no retinoic acid responsive elements. Experiments using mutated Sp1 sites of the NSMase2 promoter, Mithramycin A (a Sp inhibitor) and Sp family over-expression demonstrated the importance of Sp family protein and the three Sp1 sites for ATRA-induced NSMase2 transcription of MCF-7 cells. Although no quantitative change of bound Sp1 on NSMase2 promoter region after ATRA treatment was detected, Sp1 phosphorylation (activation) by ATRA was observed. Interestingly, PKCδ was involved in ATRA-induced increased NSMase2 transcription. ATRA-induced PKCδ phosphorylation and then activated PKCδ phosphorylated Sp1. Chromatin immunoprecipitation (ChIP) assay showed Sp1, RARα and RXRα complex formation in MCF-7 cells regardless of ATRA treatment and ATRA-induced acetylated histone H3 of the 5'-promoter. Thus, NSMase2 mRNA expression enhanced by ATRA was due to increased transcription via phosphorylated Sp1 caused by PKCδ activation, followed by chromatin remodelling with histone H3 acetylation.


Subject(s)
Sphingomyelin Phosphodiesterase/genetics , Transcription, Genetic , Tretinoin/pharmacology , Cell Survival/drug effects , Gene Expression Profiling , Humans , MCF-7 Cells , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sphingomyelin Phosphodiesterase/metabolism , Structure-Activity Relationship , Transcription, Genetic/drug effects , Tretinoin/therapeutic use
3.
J Cell Biochem ; 112(11): 3449-58, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21769916

ABSTRACT

Glial cell line-derived neurotrophic factor (GDNF) is important for the development and maintenance of dopamine neurons (Lin et al. [1993] Science 260: 1130-1132). GDNF is neuroprotective in animal models of Parkinson disease, where dopamine neurons show selective degeneration. We previously reported GDNF-induced SPHK1 gene expression in a neuroblastoma cell line, TGW (Murakami et al. [2007] J Neurochem 102: 1585-1594). In the present study, we focused on the regulatory mechanism of GAP43 (GDNF-induced neuronal phenotype) transcription to further elucidate physiological roles of GDNF-induced SPHK1 expression and activity. Stable wild-type (SPHK1-WT) but not dominant-negative SPHK1 (SPHK1-DN) overexpression increased both control- and GDNF-induced GAP43 expression. SPHK1-WT cells showed enhanced GDNF-induced sphingosine 1-phosphate (S1P) secretion compared with mock- and SPHK1-DN cells. Exogenous S1P also increased GAP43 expression. In TGW cells, PD98059, a MEK inhibitor, but not SB203580 (a p38 MAPK inhibitor) and LY294002 (a PI3K inhibitor) inhibited GDNF-induced GAP43 expression, suggesting the MEK/ERK pathway has a major role in GDNF-induced GAP43 transcription. A G-protein-coupled receptor inhibitor, pertussis toxin, and S1P(1) and S1P(3) receptor antagonists (VPC23019 and CAY10444) also inhibited ERK activation. Moreover, both S1P1 and S1P3 were serine-phosphorylated by GDNF, suggesting their activated states. C/EBPß transcription factor was induced by GDNF, and DNA pull-down and chromatin immunoprecipitation assays revealed the C/EBP binding site between -131 bp and -98 bp from the first exon of GAP43. Taken together, our results showed that in TGW cells, GDNF increased SPHK1 transcription, leading to the production and secretion of S1P. Through MEK/ERK pathway, S1P stimulates GAP43 transcription with increased binding of C/EBPß to the 5'-promoter.


Subject(s)
GAP-43 Protein/genetics , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Lysophospholipids/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Sphingosine/analogs & derivatives , Transcription, Genetic , Base Sequence , Blotting, Western , Cell Line, Tumor , Chromatin Immunoprecipitation , Cloning, Molecular , DNA Primers , Humans , Polymerase Chain Reaction , Promoter Regions, Genetic , Signal Transduction , Sphingosine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...