Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Methods ; 16(16): 2478-2488, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38606568

ABSTRACT

The demand for monitoring anthropogenic U isotopes, 236U and 233U, in seawater will continue to increase due to radioecological issues and the need for tools for environmental dynamics research. In response to this growing demand, herein, a novel and simple method was developed for the collection of U isotopes in seawater, both in the laboratory and field, using a fabric-like amidoxime adsorbent. The results from the adsorption studies showed that the optimum conditions for processing seawater in a glass beaker were as follows: seawater pH 4, amidoxime adsorbent 0.20 mmol per 500 g seawater and an adsorption time of 9 hours. Alternatively, when using a closed polyethylene container in experiments on-board a ship and using the same ratio of adsorbent to seawater as in the beaker experiment in the laboratory, the optimum conditions were as follows: seawater pH 8 and an adsorption time of 24 hours. Under the above-mentioned conditions, more than 95% of the U underwent adsorption in both the beaker and the polyethylene container experiments. In the case of analyte desorption, more than 80% of U in seawater was recovered using 2-3 mol dm-3 HCl or HNO3 as the eluent. Thus, it was concluded that the amidoxime adsorbent can serve as a simple and effective pre-concentration method for the ultra-trace monitoring of U isotopes in seawater.

2.
Polymers (Basel) ; 13(7)2021 Apr 05.
Article in English | MEDLINE | ID: mdl-33916430

ABSTRACT

A chelating fabric was prepared by graft polymerization of glycidyl methacrylate (GMA) onto a nonwoven fabric, followed by attachment reaction of N-methyl-D-glucamine (NMDG) using an organic solvent-free process. The graft polymerization was performed by immersing the gamma-ray pre-irradiated fabric into the GMA emulsion, while the attachment reaction was carried out by immersing the grafted fabric in the NMDG aqueous solution. The chelating capacity of the chelating fabric prepared by reaction in the NMDG aqueous solution without any additives reached 1.74 mmol/g, which further increased to above 2.0 mmol/g when surfactant and acid catalyst were added in the solution. The boron chelation of the chelating fabric was evaluated in a batch mode. Fourier transform infrared spectrophotometer (FTIR) was used to characterize the fabrics. The chelating fabric can quickly chelate boron from water to form a boron ester, and a high boron chelating ability close to 18.3 mg/g was achieved in the concentrated boron solution. The chelated boron can be eluted completely by HCl solution. The regeneration and stability of the chelating fabric were tested by 10 cycles of the chelation-elution operations. Considering the organic solvent-free preparation process and the high boron chelating performance, the chelating fabric is promising for the boron removal from water.

3.
Polymers (Basel) ; 12(11)2020 Nov 11.
Article in English | MEDLINE | ID: mdl-33187185

ABSTRACT

A nonwoven fabric adsorbent loaded with 2-ethylhexyl hydrogen-2-ethylhexylphosphonate (EHEP) was developed for the separation and recovery of dysprosium (Dy) and neodymium (Nd) from an aqueous solution. The adsorbent was prepared by the radiation-induced graft polymerization of a methacrylate monomer with a long alkyl chain onto a nonwoven fabric and the subsequent loading of EHEP by hydrophobic interaction and chain entanglement between the alkyl chains. The adsorbent was evaluated by batch and column tests with a Dy (III) and Nd (III) aqueous solution. In the batch tests, the adsorbent showed high Dy (III) adsorptivity close to 25.0 mg/g but low Nd (III) adsorptivity below 1.0 mg/g, indicating that the adsorbent had high selective adsorption. In particular, the octadecyl methacrylate (OMA)-adsorbent showed adsorption stability in repeated tests. In the column tests, the OMA-adsorbent was also stable and showed high Dy (III) adsorptivity and high selectivity in repeated adsorption-elution circle tests. This result suggested that the OMA-adsorbent may be a promising adsorbent for the separation and recovery of Dy (III) and Nd (III) ions.

4.
Sci Rep ; 10(1): 16155, 2020 10 15.
Article in English | MEDLINE | ID: mdl-33060609

ABSTRACT

Visualizing the dynamics of cesium (Cs) is desirable to understand the impact of radiocesium when accidentally ingested or inhaled by humans. However, visualization of radiocesium in vivo is currently limited to plants. Herein, we describe a method for the production and purification of 127Cs and its use in visualizing Cs dynamics in a living animal. The positron-emitting nuclide 127Cs was produced using the 127I (α, 4n) 127Cs reaction, which was induced by irradiation of sodium iodide with a 4He2+ beam from a cyclotron. We excluded sodium ions by using a material that specifically adsorbs Cs as a purification column and successfully eluted 127Cs by flowing a solution of ammonium sulfate into the column. We injected the purified 127Cs tracer solution into living rats and the dynamics of Cs were visualized using positron emission tomography; the distributional images showed the same tendency as the results of previous studies using disruptive methods. Thus, this method is useful for the non-invasive investigation of radiocesium in a living animal.


Subject(s)
Cesium Radioisotopes/analysis , Cesium Radioisotopes/pharmacokinetics , Electrons , Positron-Emission Tomography/methods , Radiation Monitoring/methods , Whole Body Imaging/methods , Animals , Cesium Radioisotopes/isolation & purification , Male , Rats , Rats, Wistar , Tissue Distribution
5.
Polymers (Basel) ; 11(12)2019 Dec 02.
Article in English | MEDLINE | ID: mdl-31810361

ABSTRACT

This paper investigates the selectivity of GMA-based-non-woven fabrics adsorbent towards copper ion (Cu) functionalized with several aliphatic amines. The aliphatic amines used in this study were ethylenediamine (EDA), diethylenetriamine (DETA), triethylenetetramine (TETA), and tetraethylenepentamine (TEPA). The non-woven polyethylene/polypropylene fabrics (NWF) were grafted with glycidyl methacrylate (GMA) via pre-radiation grafting technique, followed by chemical functionalization with the aliphatic amine. To prepare the ion recognition polymer (IRP), the functionalized amine GMA-grafted-NWF sample was subjected to radiation crosslinking process along with the crosslinking agent, divinylbenzene (DVB), in the presence of Cu ion as a template in the matrix of the adsorbent. Functionalization with different aliphatic amine was carried out at different amine concentrations, grafting yield, reaction temperature, and reaction time to study the effect of different aliphatic amine onto amine density yield. At a concentration of 50% of amine and 50% of isopropanol, EDA, DETA, TETA, and TEPA had attained amine density around 5.12, 4.06, 3.04, and 2.56 mmol/g-ad, respectively. The amine density yield decreases further as the aliphatic amine chain grows longer. The experimental condition for amine functionalization process was fixed at 70% amine, 30% isopropanol, 60 °C for grafting temperature, and 2 h of grafting time for attaining 100% of grafting yield (Dg). The prepared adsorbents were characterized comprehensively in terms of structural and morphology with multiple analytical tools. An adsorptive removal and selectivity of Cu ion by the prepared adsorbent was investigated in a binary metal ion system. The IRP samples with a functional precursor of EDA, the smallest aliphatic amine had given the higher adsorption capacity and selectivity towards Cu ion. The selectivity of IRP samples reduces as the aliphatic amine chain grows longer, EDA to TEPA. However, IRP samples still exhibited remarkably higher selectivity in comparison to the amine immobilized GMA-g-NWF at similar adsorption experimental conditions. This observation indicates that IRP samples possess higher selectivity after incorporation of the ion recognition imprint technique via the radiation crosslinking process.

6.
ACS Appl Mater Interfaces ; 5(17): 8761-5, 2013 Sep 11.
Article in English | MEDLINE | ID: mdl-23931764

ABSTRACT

Gold nanostructured microtubes (AuNMTs) are prepared using a tertiary amine group-functionalized polyethylene (PE)-coated polypropylene (PP) nonwoven fabric as a ligand, a reductant, and a template, which takes advantage of the different radiation effects of PE and PP. The Au(III) ions are absorbed and reduced only in the PE layer to form the aggregation of gold nanoparticles; thus, AuNMTs are obtained after the calcination.

SELECTION OF CITATIONS
SEARCH DETAIL
...