Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 134(12): 124509, 2011 Mar 28.
Article in English | MEDLINE | ID: mdl-21456678

ABSTRACT

The molar electrolyte conductivities of dilute solutions of the tetramethyl, tetraethyl, tetra-n-propyl, and tetra-n-butylammonium bromides were measured in ethanol along the liquid-vapor coexistence curve up to 160 °C. The limiting molar electrolyte conductivities and the molar association constants were obtained from the analysis of the concentration dependence of the conductivity. The ionic friction coefficients were estimated from the electrolyte conductivities. On the basis of the present data together with the literature ones at higher densities (lower temperatures) and comparisons with the continuum dielectric friction theory, the density (temperature) dependence of the translational friction coefficients of the tetraalkylammonium ions were discussed in the range of 0.810 ≥ ρ ≥ 0.634 g cm(-3) (-5 °C ≤ t ≤ 160 °C). The dielectric friction effect was important for the tetramethylammonium ion in the whole range studied. The tetraethylammonium ion showed a relatively small friction coefficient in ambient condition indicating the structure-loosening effect around the ion, while the dielectric friction effect became more important as the density reduces and the temperature raises. For the tetra-n-butylammonium ion, the friction coefficients were determined mainly by the bulky size effect. The tetra-n-propylammonium ion showed an intermediate tendency between the tetraethylammonium and tetra-n-butylammonium ions.

2.
J Chem Phys ; 132(11): 114501, 2010 Mar 21.
Article in English | MEDLINE | ID: mdl-20331299

ABSTRACT

The molar electric conductivities Lambda of NaBr, KBr, and CsBr were measured in liquid ethanol at temperatures from 60 to 220 degrees C along the liquid-vapor coexistence curve. The limiting molar electrolyte conductivities Lambda(o) and the molar association constants K(A) were determined by the analysis of the concentration dependence of Lambda. The friction coefficients zeta for the Na(+), K(+), Cs(+), and Br(-) ions were estimated from Lambda(o) by an assumption that the cationic transference number of KBr is independent of temperature and density. The density dependences of zeta thus obtained together with literature values at higher densities (lower temperatures) were examined. zeta increases with decreasing density at densities above 2.0rho(c), where rho(c)=0.276 g cm(-3) is the critical density. At lower densities, the density dependences of zeta depend on ion. The relative contribution of the nonviscous effect in zeta was estimated by Deltazeta/zeta, where Deltazeta was the difference between zeta and the Stokes friction coefficient. At densities above 2.7rho(c), Deltazeta/zeta slightly decreases with decreasing density except for the Cs(+) ion. At densities below 2.7rho(c), Deltazeta/zeta increases with decreasing density and the density dependence is larger for larger ion. The results at densities above 2.2rho(c) were well explained by the Hubbard-Onsager (HO) dielectric friction theory [J. Hubbard, J. Chem. Phys. 68, 1649 (1978)] based on the sphere-in-continuum model. Below 2.2rho(c), however, experimental Deltazeta/zeta tends to be larger than the prediction of the HO theory. The lower limit density of the validity range of the HO theory is slightly higher in ethanol than in methanol.


Subject(s)
Bromides/chemistry , Cesium/chemistry , Ethanol/chemistry , Potassium Compounds/chemistry , Sodium Compounds/chemistry , Temperature , Electric Conductivity , Electrolytes/chemistry , Phase Transition
3.
Rev Sci Instrum ; 78(11): 115111, 2007 Nov.
Article in English | MEDLINE | ID: mdl-18052508

ABSTRACT

A laser-Doppler vibrometer was used to measure the vibration of a vibrating tube densimeter for measuring P-V-T data at high temperatures and pressures. The apparatus developed allowed the control of the residence time of the sample so that decomposition at high temperatures could be minimized. A function generator and piezoelectric crystal was used to excite the U-shaped tube in one of its normal modes of vibration. Densities of methanol-water mixtures are reported for at 673 K and 40 MPa with an uncertainty of 0.009 g/cm3.

4.
J Chem Phys ; 122(10): 104512, 2005 Mar 08.
Article in English | MEDLINE | ID: mdl-15836337

ABSTRACT

The molar conductivities of the dilute solutions of the tetraalkylammonium bromides have been measured in methanol along the liquid-vapor coexistence curve up to about 180 degrees C. The limiting molar conductivities and the molar association constants have been obtained from the analysis of the concentration dependence of the conductivity. On the basis of the present data together with the literature ones, the validity of the Hubbard-Onsager (HO) dielectric friction theory [J. Hubbard, J. Chem. Phys. 68, 1649 (1978)] derived from the continuum model has been examined for the translational friction coefficients of the tetraalkylammonium ions in methanol in the density range of 0.8232 g cm(-3) > or =rho > or =0.5984 g cm(-3) and the temperature range of -15 degrees C < or =t < or =180 degrees C. At high densities and low temperatures, the observed friction coefficients of Me(4)N(+) and Et(4)N(+) are remarkably smaller than the prediction of the HO theory (where Me stands for methyl group and Et for ethyl group); this kind of limitation of the HO theory has not been recognized for smaller ions, and can be attributed to the loosening of the solvent structure closely related to the weak charge effect for the large ions. The negative deviation from the HO theory gradually disappears with decreasing density and increasing temperature, and the friction coefficients of Me(4)N(+) and Et(4)N(+) are explained by the HO theory reasonably well at low densities and high temperatures. For Pr(4)N(+) and Bu(4)N(+) (where Pr stands for propyl group and Bu for butyl group), the experimental friction coefficients lay in the validity range of the HO theory in all the conditions studied here; the breakdown of the continuum theory at low densities and high temperatures has not been observed in this work. The density dependences of the molar association constants of the tetraalkylammonium bromides are qualitatively explained by the Fuoss theory based on the continuum model.

5.
J Chem Phys ; 121(19): 9517-25, 2004 Nov 15.
Article in English | MEDLINE | ID: mdl-15538873

ABSTRACT

The molar conductivities Lambda of KBr and KI in dilute methanol solutions were measured along the liquid-vapor coexistence curve up to the critical temperature (240 degrees C). The concentration dependence of Lambda in each condition was analyzed by the Fuoss-Chen-Justice equation to obtain the limiting molar conductivities and the molar association constants. Using the present data together with the literature ones, the validity of the Hubbard-Onsager (HO) dielectric friction theory based on the sphere-in-continuum model was examined for the translational friction coefficients zeta of the halide ions (the Cl(-), Br(-), and I(-) ions) in methanol in the density range of 2.989rho(c)> or =rho> or =1.506rho(c), where rho(c)=0.2756 g cm(-3) is the critical density of methanol. For all the halide ions studied, the friction coefficient decreased with decreasing density at rho>2.0rho(c), while the nonviscous contribution Deltazeta/zeta increased; Deltazeta was defined as the difference between zeta and the friction coefficient estimated by the Stokes law. The density dependence of zeta and Deltazeta/zeta were well reproduced by the HO theory at rho>2.0rho(c). The HO theory also explained the ion-size dependence of Deltazeta/zeta which decreased with ion-size at rho>2.0rho(c). At rho<2.0rho(c), on the other hand, the HO theory could not explain the density and the ion-size dependences of zeta and Deltazeta/zeta. These results indicated that the application limit of the HO theory lied about rho=2.0rho(c) which is the same as the application limit observed for the alkali metal ions. The present results were also compared with the results in subcritical aqueous solutions.

6.
J Chem Phys ; 120(9): 4355-65, 2004 Mar 01.
Article in English | MEDLINE | ID: mdl-15268605

ABSTRACT

The molar conductivities Lambda of NaCl, KCl, and CsCl in liquid methanol were measured in the concentration range of (0.3-2.0) x 10(-3) mol dm(-3) and the temperature range of 60-240 degrees C along the liquid-vapor coexistence curve. The temperature range corresponds to the solvent density range of (2.78-1.55)rhoc, where rhoc = 0.2756 g cm(-3) is the critical density of methanol. The concentration dependence of Lambda at each temperature and density (pressure) has been analyzed by the Fuoss-Chen-Justice equation to obtain the limiting molar conductivity Lambda0 and the molar association constant KA. For all the electrolytes studied, Lambda0 increased almost linearly with decreasing density at densities above 2.0rhoc, while the opposite tendency was observed at lower densities. The relative contribution of the nonhydrodynamic effect on the translational friction coefficient zeta was estimated in terms of Deltazeta/zeta, where the residual friction coefficient Deltazeta is the difference between zeta and the Stokes friction coefficient zetaS. At densities above 2.0rhoc, Deltazeta/zeta increased with decreasing density though zeta and Deltazeta decrease, and the tendencies are common for all the ions studied. The density dependences of zeta and Deltazeta/zeta were explained well by the Hubbard-Onsager (HO) dielectric friction theory based on the sphere-in-continuum model. At densities below 2.0rhoc, however, the experimental results cannot be explained by the HO theory.

SELECTION OF CITATIONS
SEARCH DETAIL
...