Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38766194

ABSTRACT

Most common cytometry methods, including flow cytometry, observe suspended or fixed cells and cannot evaluate their structural roles in 3D tissues. However, cellular physical interactions are critical in physiological, developmental, and pathological processes. Here, we present a novel optical visco-elastography that characterizes single-cellular physical interactions by applying in-situ micro-mechanical perturbation to live microtissues under 3D lightsheet microscopy. The 4D digital image correlation (DIC) analysis of ~20,000 nodes tracked the compressive deformation of 3D tissues containing ~500 cells. The computational 3D image segmentation allowed cell-by-cell qualitative observation and statistical analysis, directly correlating multi-channel fluorescence and viscoelasticity. To represent epithelia-stroma interactions, we used a 3D organoid model of maternal-fetal interface and visualized solid-like, well-aligned displacement and liquid-like random motion between individual cells. The statistical analysis through our unique cytometry confirmed that endometrial stromal fibroblasts stiffen in response to decidualization. Moreover, we demonstrated in the 3D model that interaction with placental extravillous trophoblasts partially reverses the attained stiffness, which was supported by the gene expression analysis. Placentation shares critical cellular and molecular significance with various fundamental biological events such as cancer metastasis, wound healing, and gastrulation. Our analysis confirmed existing beliefs and discovered new insights, proving the broad applicability of our method.

2.
Ann Biomed Eng ; 52(3): 647-656, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38036895

ABSTRACT

The proper formation of the vertebrate embryonic heart relies on various mechanical forces which determine its form and function. Measuring these forces at the microscale of the embryo is a challenge. We propose a new tool utilizing high-resolution optical elastography and stiffness measurements of surrounding tissues to non-invasively track the changes in the pressure exerted by the heart on the neighboring yolk, as well as changes in contractile patterns during early cardiac growth in-vivo, using the zebrafish embryo as a model system. Cardiac development was characterized every three hours from 24 hours post-fertilization (hpf) to 30 hpf and compared between wildtype fish and those treated with MS-222, a commonly used fish anesthetic that decreases cardiac contractility. Wildtype embryos from 24 to 30 hpf showed an average yolk indentation pressure of 0.32 mmHg to 0.41 mmHg, respectively. MS-222 treated embryos showed an average yolk indentation pressure of 0.22 mmHg to 0.29 mmHg. Yolk indentation pressure between control and treated embryos at 24 hpf and 30 hpf showed a significant difference (p < 0.05). Our method allowed for contractility and pressure evaluation at these early developmental stages, which have not been previously reported in published literature, regardless of sample or imaging modality. This research could lead to a better understanding of heart development and improved diagnostic tools for congenital heart disease.


Subject(s)
Aminobenzoates , Elasticity Imaging Techniques , Zebrafish , Animals , Embryo, Nonmammalian/diagnostic imaging , Heart/diagnostic imaging
3.
PLoS One ; 18(5): e0286291, 2023.
Article in English | MEDLINE | ID: mdl-37228139

ABSTRACT

Multicellular cancer spheroids are an in vitro tissue model that mimics the three-dimensional microenvironment. As spheroids grow, they develop the gradients of oxygen, nutrients, and catabolites, affecting crucial tumor characteristics such as proliferation and treatment responses. The measurement of spheroid stiffness provides a quantitative measure to evaluate such structural changes over time. In this report, we measured the stiffness of size-matched day 5 and day 20 tumor spheroids using a custom-built microscale force sensor and conducted transmission electron microscopy (TEM) imaging to compare the internal structures. We found that older spheroids reduce interstitial spaces in the core region and became significantly stiffer. The measured elastic moduli were 260±100 and 680±150 Pa, for day 5 and day 20 spheroids, respectively. The day 20 spheroids showed an optically dark region in the center. Analyzing the high-resolution TEM images of spheroid middle sections across the diameter showed that the cells in the inner region of the day 20 spheroids are significantly larger and more closely packed than those in the outer regions. On the other hand, the day 5 spheroids did not show a significant difference between the inner and outer regions. The observed reduction of the interstitial space may be one factor that contributes to stiffer older spheroids.


Subject(s)
Neoplasms , Spheroids, Cellular , Humans , Microscopy, Electron , Tumor Microenvironment
4.
J Biophotonics ; 16(3): e202200238, 2023 03.
Article in English | MEDLINE | ID: mdl-36336921

ABSTRACT

We evaluated the elasticity of live tissues of zebrafish embryos using label-free optical elastography. We employed a pair of custom-built elastic microcantilevers to gently compress a zebrafish embryo and used optical-tracking analysis to obtain the induced internal strain. We then built a finite element method (FEM) model and matched the strain with the optical analysis. The elastic moduli were found by minimizing the root-mean-square errors between the optical and FEM analyses. We evaluated the average elastic moduli of a developing somite, the overlying ectoderm, and the underlying yolk of seven zebrafish embryos during the early somitogenesis stages. The estimation results showed that the average elastic modulus of the somite increased from 150 to 700 Pa between 4- and 8-somite stages, while those of the ectoderm and the yolk stayed between 100 and 200 Pa, and they did not show significant changes. The result matches well with the developmental process of somitogenesis reported in the literature. This is among the first attempts to quantify spatially-resolved elasticity of embryonic tissues from optical elastography.


Subject(s)
Elasticity Imaging Techniques , Zebrafish , Animals , Elasticity Imaging Techniques/methods , Microscopy , Embryonic Development , Elastic Modulus
5.
Methods Mol Biol ; 2394: 31-46, 2022.
Article in English | MEDLINE | ID: mdl-35094320

ABSTRACT

By combining novel micro-scale manipulation cantilevers with commercially available, widely used 3D light microscopy, we were able to develop a new method of 3D elastography specialized for the analysis of 3D microtumors. Existing mechanical characterization methods are available for the study of single cells, using forces in the range of sub pN to a few hundred nN, or of larger tissues, with forces greater than 1 mN. Our method supports the mechanical analysis of micro- to meso-scale 3D tissues, such as multicellular spheroids (200-300 µm diameter), by applying forces in the range of sub-hundred nN to sub-mN, while also maintaining a spatial resolution of elasticity measurement as small as 20-30 µm. We use a differential interference contrast (DIC)/confocal microscope to obtain a 4D (x, y, z, and indentation steps) image sequence, which is then analyzed using our custom 3D pattern-tracking MATLAB program. With this method, we have been able to show structural and spatial heterogeneity among single cells and surrounding regions in tumor spheroids, and between different cell types in tumor-fibroblast co-cultured spheroids. Our method has the potential to both bridge the gap between in vitro monolayer culture systems and in vivo animal studies and add a mechanical component to existing biological assays.


Subject(s)
Neoplasms , Spheroids, Cellular , Animals , Coculture Techniques , Fibroblasts
6.
PLoS One ; 17(1): e0262950, 2022.
Article in English | MEDLINE | ID: mdl-35073389

ABSTRACT

This study presents novel biocompatible Polydimethylsiloxane (PDMS)-based micromechanical tweezers (µTweezers) capable of the stiffness characterization and manipulation of hydrogel-based organoids. The system showed great potential for complementing established mechanical characterization methods such as Atomic Force Microscopy (AFM), parallel plate compression (PPC), and nanoindentation, while significantly reducing the volume of valuable hydrogels used for testing. We achieved a volume reduction of ~0.22 µl/sample using the µTweezers vs. ~157 µl/sample using the PPC, while targeting high-throughput measurement of widely adopted micro-mesoscale (a few hundred µm-1500 µm) 3D cell cultures. The µTweezers applied and measured nano-millinewton forces through cantilever' deflection with high linearity and tunability for different applications; the assembly is compatible with typical inverted optical microscopes and fit on standard tissue culture Petri dishes, allowing mechanical compression characterization of arrayed 3D hydrogel-based organoids in a high throughput manner. The average achievable output per group was 40 tests per hour, where 20 organoids and 20 reference images in one 35 mm petri dish were tested, illustrating efficient productivity to match the increasing demand on 3D organoids' applications. The changes in stiffness of collagen I hydrogel organoids in four conditions were measured, with ovarian cancer cells (SKOV3) or without (control). The Young's modulus of the control group (Control-day 0, E = 407± 146, n = 4) measured by PPC was used as a reference modulus, where the relative elastic compressive modulus of the other groups based on the stiffness measurements was also calculated (control-day 0, E = 407 Pa), (SKOV3-day 0, E = 318 Pa), (control-day 5, E = 528 Pa), and (SKOV3-day 5, E = 376 Pa). The SKOV3-embedded hydrogel-based organoids had more shrinkage and lowered moduli on day 0 and day 5 than controls, consistently, while SKOV3 embedded organoids increased in stiffness in a similar trend to the collagen I control from day 0 to day 5. The proposed method can contribute to the biomedical, biochemical, and regenerative engineering fields, where bulk mechanical characterization is of interest. The µTweezers will also provide attractive design and application concepts to soft membrane-micro 3D robotics, sensors, and actuators.


Subject(s)
Cell Culture Techniques , Hydrogels/chemistry , Organoids , Stress, Mechanical , Cell Line, Tumor , Female , Humans , Middle Aged , Organoids/cytology , Organoids/growth & development
7.
Biosens Bioelectron ; 196: 113699, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34653716

ABSTRACT

Traditional microbial detection methods often rely on the overall property of microbial cultures and cannot resolve individual growth event at high spatiotemporal resolution. As a result, they require bacteria to grow to confluence and then interpret the results. Here, we demonstrate the application of an integrated ptychographic sensor for lensless cytometric analysis of microbial cultures over a large scale and with high spatiotemporal resolution. The reported device can be placed within a regular incubator or used as a standalone incubating unit for long-term microbial monitoring. For longitudinal study where massive data are acquired at sequential time points, we report a new temporal-similarity constraint to increase the temporal resolution of ptychographic reconstruction by 7-fold. With this strategy, the reported device achieves a centimeter-scale field of view, a half-pitch spatial resolution of 488 nm, and a temporal resolution of 15-s intervals. For the first time, we report the direct observation of bacterial growth in a 15-s interval by tracking the phase wraps of the recovered images, with high phase sensitivity like that in interferometric measurements. We also characterize cell growth via longitudinal dry mass measurement and perform rapid bacterial detection at low concentrations. For drug-screening application, we demonstrate proof-of-concept antibiotic susceptibility testing and perform single-cell analysis of antibiotic-induced filamentation. The combination of high phase sensitivity, high spatiotemporal resolution, and large field of view is unique among existing microscopy techniques. As a quantitative and miniaturized platform, it can improve studies with microorganisms and other biospecimens at resource-limited settings.


Subject(s)
Biosensing Techniques , Longitudinal Studies , Microscopy
8.
Micromachines (Basel) ; 11(10)2020 Sep 26.
Article in English | MEDLINE | ID: mdl-32993158

ABSTRACT

In this paper, we report on a novel biocompatible micromechanical bioreactor (actuator and sensor) designed for the in situ manipulation and characterization of live microtissues. The purpose of this study was to develop and validate an application-targeted sterile bioreactor that is accessible, inexpensive, adjustable, and easily fabricated. Our method relies on a simple polydimethylsiloxane (PDMS) molding technique for fabrication and is compatible with commonly-used laboratory equipment and materials. Our unique design includes a flexible thin membrane that allows for the transfer of an external actuation into the PDMS beam-based actuator and sensor placed inside a conventional 35 mm cell culture Petri dish. Through computational analysis followed by experimental testing, we demonstrated its functionality, accuracy, sensitivity, and tunable operating range. Through time-course testing, the actuator delivered strains of over 20% to biodegradable electrospun poly (D, L-lactide-co-glycolide) (PLGA) 85:15 non-aligned nanofibers (~91 µm thick). At the same time, the sensor was able to characterize time-course changes in Young's modulus (down to 10-150 kPa), induced by an application of isopropyl alcohol (IPA). Furthermore, the actuator delivered strains of up to 4% to PDMS monolayers (~30 µm thick), simultaneously characterizing their elastic modulus up to ~2.2 MPa. The platform repeatedly applied dynamic (0.23 Hz) tensile stimuli to live Human Dermal Fibroblast (HDF) cells for 12 hours (h) and recorded the cellular reorientation towards two angle regimes, with averages of -58.85° and +56.02°. The device biocompatibility with live cells was demonstrated for one week, with no signs of cytotoxicity. We can conclude that our PDMS bioreactor is advantageous for low-cost tissue/cell culture micromanipulation studies involving mechanical actuation and characterization. Our device eliminates the need for an expensive experimental setup for cell micromanipulation, increasing the ease of live-cell manipulation studies by providing an affordable way of conducting high-throughput experiments without the need to open the Petri dish, reducing manual handling, cross-contamination, supplies, and costs. The device design, material, and methods allow the user to define the operational range based on their targeted samples/application.

9.
J Biophotonics ; 13(12): e202000227, 2020 12.
Article in English | MEDLINE | ID: mdl-32844560

ABSTRACT

Whole slide imaging (WSI) has moved digital pathology closer to diagnostic practice in recent years. Due to the inherent tissue topography variability, accurate autofocusing remains a critical challenge for WSI and automated microscopy systems. The traditional focus map surveying method is limited in its ability to acquire a high degree of focus points while still maintaining high throughput. Real-time approaches decouple image acquisition from focusing, thus allowing for rapid scanning while maintaining continuous accurate focus. This work reviews the traditional focus map approach and discusses the choice of focus measure for focal plane determination. It also discusses various real-time autofocusing approaches including reflective-based triangulation, confocal pinhole detection, low-coherence interferometry, tilted sensor approach, independent dual sensor scanning, beam splitter array, phase detection, dual-LED illumination and deep-learning approaches. The technical concepts, merits and limitations of these methods are explained and compared to those of a traditional WSI system. This review may provide new insights for the development of high-throughput automated microscopy imaging systems that can be made broadly available and utilizable without loss of capacity.


Subject(s)
Image Processing, Computer-Assisted , Microscopy
10.
Opt Lett ; 45(13): 3486-3489, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32630878

ABSTRACT

We report an angle-tilted, wavelength-multiplexed ptychographic modulation approach for multispectral lensless on-chip microscopy. In this approach, we illuminate the specimen with lights at five wavelengths simultaneously. A prism is added at the illumination path for spectral dispersion. Thus, lightwaves at different wavelengths hit the specimen at slightly different incident angles, breaking the ambiguities in mixed-state ptychographic reconstruction. At the detection path, we place a thin diffuser between the specimen and the monochromatic image sensor for encoding the spectral information into 2D intensity measurements. By scanning the sample to different x-y positions, we acquire a sequence of monochromatic images for reconstructing the five complex object profiles at the five wavelengths. An up-sampling procedure is integrated into the recovery process to bypass the resolution limit imposed by the imager pixel size. We demonstrate a half-pitch resolution of 0.55 µm using an image sensor with 1.85 µm pixel size. We also demonstrate quantitative and high-quality multispectral reconstructions of stained tissue sections for digital pathology applications.

11.
Bioact Mater ; 5(4): 924-937, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32637755

ABSTRACT

A variety of engineered nanoparticles, including lipid nanoparticles, polymer nanoparticles, gold nanoparticles, and biomimetic nanoparticles, have been studied as delivery vehicles for biomedical applications. When assessing the efficacy of a nanoparticle-based delivery system, in vitro testing with a model delivery system is crucial because it allows for real-time, in situ quantitative transport analysis, which is often difficult with in vivo animal models. The advent of tissue engineering has offered methods to create experimental models that can closely mimic the 3D microenvironment in the human body. This review paper overviews the types of nanoparticle vehicles, their application areas, and the design strategies to improve delivery efficiency, followed by the uses of engineered microtissues and methods of analysis. In particular, this review highlights studies on multicellular spheroids and other 3D tissue engineering approaches for cancer drug development. The use of bio-engineered tissues can potentially provide low-cost, high-throughput, and quantitative experimental platforms for the development of nanoparticle-based delivery systems.

12.
Opt Lett ; 44(15): 3645-3648, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31368933

ABSTRACT

We report a new coherent imaging technique, termed ptychographic structured modulation (PSM), for quantitative super-resolution microscopy. In this technique, we place a thin diffuser (i.e., a scattering lens) in between the sample and the objective lens to modulate the complex light waves from the object. The otherwise inaccessible high-resolution object information can thus be encoded into the captured images. We then employ a ptychographic phase retrieval process to jointly recover the exit wavefront of the complex object and the unknown diffuser profile. Unlike the illumination-based super-resolution approach, the recovered image of our approach depends upon how the complex wavefront exits the sample-not enters it. Therefore, the sample thickness becomes irrelevant during reconstruction. After recovery, we can propagate the super-resolution complex wavefront to any position along the optical axis. We validate our approach using a resolution target, a quantitative phase target, a two-layer sample, and a thick polydimethylsiloxane sample. We demonstrate a 4.5-fold resolution gain over the diffraction limit. We also show that a four-fold resolution gain can be achieved with as few as ∼30 images. The reported approach may provide a quantitative super-resolution strategy for coherent light, x-ray, and electron imaging.

13.
Micromachines (Basel) ; 10(7)2019 Jul 14.
Article in English | MEDLINE | ID: mdl-31337134

ABSTRACT

We report on the design and the modeling of a three-dimensional (3D) printed flexure-based actuation mechanism for robotic microtweezers, the main body of which is a single piece of nylon. Our design aims to fill a void in sample manipulation between two classes of widely used instruments: nano-scale and macro-scale robotic manipulators. The key component is a uniquely designed cam flexure system, which linearly translates the bending of a piezoelectric bimorph actuator into angular displacement. The 3D printing made it possible to realize the fabrication of the cam with a specifically calculated curve, which would otherwise be costly using conventional milling techniques. We first characterized 3D printed nylon by studying sets of simple cantilevers, which provided fundamental characteristics that could be used for further designs. The finite element method analysis based on the obtained material data matched well with the experimental data. The tweezers showed angular displacement from 0° to 10° linearly to the deflection of the piezo actuator (0-1.74 mm) with the linearity error of 0.1°. Resonant frequency of the system with/without working tweezer tips was discovered as 101 Hz and 127 Hz, respectively. Our design provides simple and low-cost construction of a versatile manipulator system for samples in the micro/meso-scale (0.1-1 mm).

14.
Biomed Opt Express ; 10(5): 2409-2418, 2019 May 01.
Article in English | MEDLINE | ID: mdl-31143496

ABSTRACT

We have demonstrated a new method of 3D elastography based on 3D light microscopy and micro-scale manipulation. We used custom-built micromanipulators to apply a mechanical force onto multicellular tumor spheroids (200-300 µm in size) and recorded the induced compression with a differential interference contrast (DIC)/confocal microscope to obtain a 4D (x, y, z, and indentation steps) image sequence. Deformation analysis made through 3D pattern tracking without using fluorescence revealed 3D structural and spatial heterogeneity in tumor spheroids. We observed a 20-30 µm-sized spot of locally-induced large deformation within a tumor spheroid. We also found solid fibroblast cores formed in a tumor-fibroblast co-culture spheroid to be stiffer than surrounding cancer cells, which would not have been discovered using only conventional fluorescence. Our new method of 3D elastography may be used to better understand structural composition in multicellular spheroids through analysis of mechanical heterogeneity.

15.
Sensors (Basel) ; 19(7)2019 Mar 28.
Article in English | MEDLINE | ID: mdl-30925721

ABSTRACT

We have developed a force sensing system to continuously evaluate the mechanical elasticity of micrometer-scale (a few hundred micrometers to a millimeter) live tissues. The sensing is achieved by measuring the deflection of force sensitive cantilevers through microscopic image analysis, which does not require electrical strain gauges. Cantilevers made of biocompatible polydimethylsiloxane (PDMS) were actuated by a piezoelectric actuator and functioned as a pair of chopsticks to measure the stiffness of the specimen. The dimensions of the cantilevers were easily adjusted to match the size, range, and stiffness of the zebrafish samples. In this paper, we demonstrated the versatility of this technique by measuring the mechanical elasticity of zebrafish embryos at different stages of development. The stiffness of zebrafish embryos was measured once per hour for 9 h. From the experimental results, we successfully quantified the stiffness change of zebrafish embryos during embryonic development.


Subject(s)
Biocompatible Materials/chemistry , Elastic Modulus , Embryo, Nonmammalian/physiology , Zebrafish/growth & development , Animals , Dimethylpolysiloxanes/chemistry , Embryonic Development , Finite Element Analysis , Optical Tweezers
16.
Opt Lett ; 44(4): 811-814, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30767993

ABSTRACT

Structured illumination has been widely used for optical sectioning and 3D surface recovery. In a typical implementation, multiple images under non-uniform pattern illumination are used to recover a single object section. Axial scanning of the sample or the objective lens is needed for acquiring the 3D volumetric data. Here we demonstrate the use of axially shifted pattern illumination for virtual volumetric confocal imaging without axial scanning. In the reported approach, we project illumination patterns at a tilted angle with respect to the detection optics. As such, the illumination patterns shift laterally at different z sections, and the 3D sample information can be recovered based on the captured 2D images. We demonstrate the reported approach for virtual confocal imaging through a diffusing layer and underwater 3D imaging through diluted milk. We show that we can acquire the entire confocal volume in ∼1 s with a throughput of 420 megapixels per second. Our approach may provide new insights for developing confocal light ranging and detection systems in degraded visual environments.

17.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 4480-4483, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30441346

ABSTRACT

We investigate the structural cellular alterations in breast cancer spheroids at various growth stages using transmission electron microscopy (TEM), focused ion beam (FIB), and scanning electron microscopy (SEM) imaging. Samples sliced by FIB milling were studied for 3D analysis and construction. The imaging results of different spheroid ages were compared for a better understanding of cancer spheroid models. This study will serve as a pilot study and reference control for further studies with the 3D tumor model including nanoparticles interaction and mechanical characterization.


Subject(s)
Breast Neoplasms/diagnostic imaging , Spheroids, Cellular/ultrastructure , Breast Neoplasms/ultrastructure , Humans , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Pilot Projects
18.
Yale J Biol Med ; 91(3): 313-321, 2018 09.
Article in English | MEDLINE | ID: mdl-30258318

ABSTRACT

Objective. The use of cerebrospinal shunts is the standard of care for hydrocephalus. However, shunts are extremely vulnerable to failure and lack noninvasive methods to monitor their viability. We review current shunt technologies and attempts to improve their function. Methods. A PubMed search was performed to find literature on shunts and shunt function. Company brochures and websites were also used. Results. Fixed and variable pressure valves from four major companies are discussed. Also reviewed are siphon resistive devices, intracranial pressure sensors, and recent attempts on the development of cerebrospinal fluid sensors, including a micromechanical flow sensor we have recently developed. Conclusions. While variable pressure valves and siphon resistive devices have both had considerable success in dealing with variable intracranial pressure, a more sophisticated, continuous monitoring system is needed to ensure shunt viability and patient safety. An integrated flow sensor may provide the ability to track fluid flow and determine shunt functionality.


Subject(s)
Hydrocephalus/physiopathology , Intracranial Pressure/physiology , Cerebrospinal Fluid Shunts , Humans
19.
ACS Biomater Sci Eng ; 4(9): 3259-3267, 2018 Sep 10.
Article in English | MEDLINE | ID: mdl-33435062

ABSTRACT

We propose a novel nondestructive, label-free, mechanical characterization method for composite biomimetic materials. The method combines microscale-force measurement, bright-field microscopy based deformation analysis, and finite-element methods (FEM) to study the heterogeneity in bioengineered composite materials. The method was used to study silk fibroin protein based, donut-shaped scaffolds consisting of a shell (diameter 5 mm) and a core (diameter 2 mm) with a stiff-core or a soft-core configuration. The samples were based on our previously reported bioengineered brain tissue model. Step-wise images of sample deformation were recorded as the automated mechanical stage compressed the sample. The force-compression curves were also recorded with a load cell. A MATLAB program was used to compare and match optically measured strain distribution with that found from the FEM simulations. Iterative processes are used to determine the values that best represent the elastic moduli of the shell and the core regions. The calculated moduli found from the composite models were not significantly different from the values measured separately for each material, demonstrating the efficacy of this new approach. In addition, the method successfully measured multiple distinct regions embedded in a polydimethylsiloxane block. These results demonstrated the feasibility of our method in the microheterogeneity characterization of biomimetic composite structures.

20.
PLoS One ; 12(11): e0188346, 2017.
Article in English | MEDLINE | ID: mdl-29166651

ABSTRACT

We describe a novel mechanical characterization method that has directly measured the stiffness of cancer spheroids for the first time to our knowledge. Stiffness is known to be a key parameter that characterizes cancerous and normal cells. Atomic force microscopy or optical tweezers have been typically used for characterization of single cells with the measurable forces ranging from sub pN to a few hundred nN, which are not suitable for measurement of larger 3D cellular structures such as spheroids, whose mechanical characteristics have not been fully studied. Here, we developed microtweezers that measure forces from sub hundred nN to mN. The wide force range was achieved by the use of replaceable cantilevers fabricated from SU8, and brass. The chopstick-like motion of the two cantilevers facilitates easy handling of samples and microscopic observation for mechanical characterization. The cantilever bending was optically tracked to find the applied force and sample stiffness. The efficacy of the method was demonstrated through stiffness measurement of agarose pillars with known concentrations. Following the initial system evaluation with agarose, two cancerous (T47D and BT474) and one normal epithelial (MCF 10A) breast cell lines were used to conduct multi-cellular spheroid measurements to find Young's moduli of 230, 420 and 1250 Pa for BT474, T47D, and MCF 10A, respectively. The results showed that BT474 and T47D spheroids are six and three times softer than epithelial MCF10A spheroids, respectively. Our method successfully characterized samples with wide range of Young's modulus including agarose (25-100 kPa), spheroids of cancerous and non-malignant cells (190-200 µm, 230-1250 Pa) and collagenase-treated spheroids (215 µm, 130 Pa).


Subject(s)
Optical Tweezers , Spheroids, Cellular/physiology , Algorithms , Biomechanical Phenomena , Cell Line, Tumor , Cell Survival , Elastic Modulus , Humans , Models, Biological , Pattern Recognition, Automated , Sepharose
SELECTION OF CITATIONS
SEARCH DETAIL
...