Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters











Publication year range
1.
J Biochem ; 175(4): 418-425, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38140954

ABSTRACT

The core M3 O-mannosyl glycan on α-dystroglycan serves as the binding epitope for extracellular matrix molecules. Defects in core M3 glycans cause congenital muscular dystrophies that are collectively known as dystroglycanopathies. The core M3 glycan contains a tandem D-ribitol-5-phosphate (Rbo5P) structure, which is synthesized by the Rbo5P-transferases fukutin and fukutin-related protein using CDP-ribitol (CDP-Rbo) as a donor substrate. CDP-Rbo is synthesized from CTP and Rbo5P by CDP-Rbo pyrophosphorylase A. However, the Rbo5P biosynthesis pathway has yet to be elucidated in mammals. Here, we investigated the reductase activities toward four substrates, including ribose, ribulose, ribose-phosphate and ribulose-phosphate, to identify the intracellular Rbo5P production pathway and elucidated the role of the aldo-keto reductases AKR1A1, AKR1B1 and AKR1C1 in those pathways. It was shown that the ribose reduction pathway is the endogenous pathway that contributes most to Rbo5P production in HEK293T cells and that AKR1B1 is the major reductase in this pathway.


Subject(s)
Ribitol , Ribose , Humans , Animals , Ribitol/metabolism , Phosphates , HEK293 Cells , Dystroglycans/metabolism , Oxidoreductases , Mammals , Polysaccharides/metabolism , Aldehyde Reductase
2.
FEBS Open Bio ; 13(6): 1086-1094, 2023 06.
Article in English | MEDLINE | ID: mdl-37032433

ABSTRACT

Obesity is a metabolic disorder associated with many diseases. WW domain-containing E3 ubiquitin protein ligase 1 (WWP1) is a HECT-type E3 ubiquitin ligase involved in several diseases. Recently, we found that the level of WWP1 is increased in white adipose tissue in a mouse model of obesity and that obese Wwp1 knockout (KO) mice exhibit improved whole-body glucose metabolism. Here, to determine which insulin-sensitive tissues contribute to this phenotype, we investigated the levels of several insulin signaling markers in white adipose tissue, liver, and skeletal muscle of Wwp1 KO mice, which were fed a normal or high-fat diet and transiently treated with insulin. In obese Wwp1 KO mice, phosphorylated Akt levels were increased in the liver but not in white adipose tissue or skeletal muscle. Moreover, the weight and triglyceride content of the liver of obese Wwp1 KO mice were decreased. These results suggest that systemic deletion of WWP1 improves glucose metabolism via enhanced hepatic insulin signaling and suppressed hepatic fat accumulation. In summary, WWP1 participates in obesity-related metabolic dysfunction and pathologies related to hepatic steatosis via suppressed insulin signaling.


Subject(s)
Insulin Resistance , Animals , Mice , Insulin Resistance/genetics , Mice, Obese , Triglycerides/metabolism , Liver/metabolism , Obesity/metabolism , Insulin/metabolism , Glucose/metabolism , Ubiquitin-Protein Ligases/metabolism
3.
ACS Chem Biol ; 17(6): 1513-1523, 2022 06 17.
Article in English | MEDLINE | ID: mdl-35670527

ABSTRACT

Ribitol phosphate modifications to the core M3 O-mannosyl glycan are important for the functional maturation of α-dystroglycan. Three sequentially extended partial structures of the core M3 O-mannosyl glycan including a tandem ribitol phosphate were regio- and stereo-selectively synthesized: Rbo5P-3GalNAcß, Rbo5P-1Rbo5P-3GalNAcß, and Xylß1-4Rbo5P-1Rbo5P-3GalNAcß (Rbo5P, d-ribitol-5-phosphate; GalNAc, N-acetyl-d-galactosamine; Xyl, d-xylose). Rbo5P-3GalNAcß with p-nitrophenyl at the aglycon part served as a substrate for ribitol phosphate transferase (FKRP, fukutin-related protein), and its product was glycosylated by the actions of a series of glycosyltransferases, namely, ribitol xylosyltransferase 1 (RXYLT1), ß1,4-glucuronyltransferase 1 (B4GAT1), and like-acetyl-glucosaminyltransferase (LARGE). Rbo5P-3GalNAcß equipped with an alkyne-type aglycon was also active for FKRP. The molecular information obtained on FKRP suggests that Rbo5P-3GalNAcß derivatives are the minimal units required as the acceptor glycan for Rbo5P transfer and may serve as a precursor for the elongation of the core M3 O-mannosyl glycan.


Subject(s)
Phosphates , Ribitol , Dystroglycans/chemistry , Dystroglycans/metabolism , Glycosylation , Pentosyltransferases/metabolism , Polysaccharides/metabolism , Ribitol/metabolism
4.
Nat Commun ; 13(1): 1847, 2022 04 14.
Article in English | MEDLINE | ID: mdl-35422047

ABSTRACT

Ribitol-phosphate modification is crucial for the functional maturation of α-dystroglycan. Its dysfunction is associated with muscular dystrophy, cardiomyopathy, and central nervous system abnormalities; however, no effective treatments are currently available for diseases caused by ribitol-phosphate defects. In this study, we demonstrate that prodrug treatments can ameliorate muscular dystrophy caused by defects in isoprenoid synthase domain containing (ISPD), which encodes an enzyme that synthesizes CDP-ribitol, a donor substrate for ribitol-phosphate modification. We generated skeletal muscle-selective Ispd conditional knockout mice, leading to a pathogenic reduction in CDP-ribitol levels, abnormal glycosylation of α-dystroglycan, and severe muscular dystrophy. Adeno-associated virus-mediated gene replacement experiments suggested that the recovery of CDP-ribitol levels rescues the ISPD-deficient pathology. As a prodrug treatment strategy, we developed a series of membrane-permeable CDP-ribitol derivatives, among which tetraacetylated CDP-ribitol ameliorated the dystrophic pathology. In addition, the prodrug successfully rescued abnormal α-dystroglycan glycosylation in patient fibroblasts. Consequently, our findings provide proof-of-concept for supplementation therapy with CDP-ribitol and could accelerate the development of therapeutic agents for muscular dystrophy and other diseases caused by glycosylation defects.


Subject(s)
Muscular Dystrophies , Prodrugs , Animals , Humans , Mice , Disease Models, Animal , Dystroglycans , Muscle, Skeletal , Muscular Dystrophies/drug therapy , Muscular Dystrophies/genetics , Phosphates , Prodrugs/pharmacology , Prodrugs/therapeutic use , Ribitol/therapeutic use
5.
Oncotarget ; 11(18): 1653-1665, 2020 May 05.
Article in English | MEDLINE | ID: mdl-32405340

ABSTRACT

Poly (ADP-ribose) polymerase 1 (PARP1) plays important roles in single strand DNA repair. PARP1 inhibitors enhance the effects of DNA damaging drugs in homologous recombination-deficient tumors including tumors with breast cancer susceptibility gene (BRCA1) mutation. Nutlin-3a, an analog of cis-imidazoline, inhibits degradation of murine double minute 2 (MDM2) and stabilizes p53. We previously reported that nutlin-3a induces PARP1 degradation in p53-dependent manner in mouse fibroblasts, suggesting nutlin-3a may be a PARP1 suppressor. Here, we investigated the effects of nutlin-3a on PARP1 in MCF-7, a human breast cancer cell line. Consistent with our previous results, nutlin-3a reduced PARP1 levels in dose- and time-dependent manners in MCF-7 cells, but this reduction was suppressed in p53 knockdown cells. RITA, a p53 stabilizer that binds to p53 itself, failed to reduce PARP1 protein levels. Moreover, transient MDM2 knockdown repressed nutlin-3a-mediated PARP1 reduction. The MG132 proteasome inhibitor, and knockdown of checkpoint with forkhead and ring finger domains (CHFR) and ring finger protein 146 (RNF146), E3 ubiquitin ligases targeting PARP1, suppressed nutlin-3a-induced PARP1 reduction. Short-term nutlin-3a treatment elevated the levels of PARylated PARP1, suggesting nutlin-3a promoted PARylation of PARP1, thereby inducing its proteasomal degradation. Furthermore, nutlin-3a-induced PARP1 degradation enhanced DNA-damaging effects of cisplatin in BRCA1 knockdown cells. Our study revealed that nutlin-3a is a PARP1 suppressor that induces PARP1 proteasomal degradation by binding to MDM2 and promoting autoPARylation of PARP1. Further analysis of the mechanisms in nutlin-3a-induced PARP1 degradation may lead to the development of novel PARP1 suppressors applicable for cancers with BRCA1 mutation.

6.
FEBS Open Bio ; 10(3): 306-315, 2020 03.
Article in English | MEDLINE | ID: mdl-31965758

ABSTRACT

White adipose tissue (WAT) is important for maintenance of homeostasis, because it stores energy and secretes adipokines. The WAT of obese people demonstrates mitochondrial dysfunction, accompanied by oxidative stress, which leads to insulin resistance. WW domain-containing E3 ubiquitin protein ligase 1 (WWP1) is a member of the HECT-type E3 family of ubiquitin ligases and is associated with several diseases. Recently, we demonstrated that WWP1 is induced specifically in the WAT of obese mice, where it protects against oxidative stress. Here, we investigated the function of WWP1 in WAT of obese mice by analyzing the phenotype of Wwp1 knockout (KO) mice fed a high-fat diet. The levels of oxidative stress markers were higher in obese WAT from Wwp1 KO mice. Moreover, Wwp1 KO mice had lower activity of citrate synthase, a mitochondrial enzyme. We also measured AKT phosphorylation in obese WAT and found lower levels in Wwp1 KO mice. However, plasma insulin level was low and glucose level was unchanged in obese Wwp1 KO mice. Moreover, both glucose tolerance test and insulin tolerance test were improved in obese Wwp1 KO mice. These findings indicate that WWP1 participates in the antioxidative response and mitochondrial function in WAT, but knockdown of WWP1 improves whole-body glucose metabolism.


Subject(s)
Adipose Tissue, White/metabolism , Glucose/metabolism , Ubiquitin-Protein Ligases/genetics , Animals , Carbohydrate Metabolism/physiology , Diet, High-Fat , Energy Metabolism/genetics , Female , Homeostasis/genetics , Insulin/metabolism , Insulin Resistance/genetics , Lipid Metabolism/genetics , Male , Mice , Mice, Knockout , Mitochondria/metabolism , Obesity/genetics , Obesity/metabolism , Oxidative Stress/genetics , Phenotype , Ubiquitin-Protein Ligases/metabolism
7.
Sci Rep ; 10(1): 634, 2020 01 20.
Article in English | MEDLINE | ID: mdl-31959889

ABSTRACT

Obesity, caused by the dysfunction of white adipose tissue (WAT), is reportedly accompanied by exacerbation of lipolysis. Perilipin 1 (PLIN1), which forms a coat around lipid droplets, interacts with several lipolysis proteins to regulate lipolysis. While it is known that perilipin family proteins are degraded in lysosomes, the underlying molecular mechanisms related to the downregulated expression of PLIN1 in obese WAT remain unknown. Recently, we found that lysosomal dysfunction originating from an abnormality of cathepsin B (CTSB), a lysosomal representative protease, occurs in obese WAT. Therefore, we investigated the effect of CTSB alterations on PLIN1 expression in obese WAT. PLIN1 protein disappeared and CTSB protein appeared in the cytoplasm of adipocytes in the early stage of obese WAT. Overexpression of CTSB reduced PLIN1 protein in 3T3L1 adipocytes, and treatment with a CTSB inhibitor significantly recovered this reduction. In addition, CTSB overexpression induced the dysfunction of lipolysis in 3T3L1 adipocytes. Therefore, we concluded that upregulation of CTSB induced the reduction of PLIN1 protein in obese WAT, resulting in lipolysis dysfunction. This suggests a novel pathology of lipid metabolism involving PLIN1 in adipocytes and that CTSB might be a therapeutic candidate molecule for obese WAT.


Subject(s)
Adipocytes, White/metabolism , Cathepsin B/genetics , Cathepsin B/metabolism , Gene Expression , Lipid Metabolism/genetics , Perilipin-1/genetics , Perilipin-1/metabolism , 3T3 Cells , Animals , Down-Regulation , Lipolysis/genetics , Lysosomes/physiology , Mice
8.
Biochem Biophys Res Commun ; 508(1): 117-122, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30471861

ABSTRACT

White adipose tissue (WAT) is not only the main tissue for energy storage but also an endocrine organ that secretes adipokines. Obesity is the most common metabolic disorder and is related to alterations in WAT characteristics, such as chronic inflammation and increasing oxidative stress. WW domain containing E3 ubiquitin protein ligase 1 (WWP1) is a HECT-type ubiquitin E3 ligase that has been implicated in various pathologies. In the present study, we found that WWP1 was upregulated in obese WAT in a p53-dependent manner. To investigate the functions of WWP1 in adipocytes, a proteome analysis of WWP1 overexpression (OE) and knockdown (KD) 3T3-L1 cells was performed. This analysis showed a positive correlation between WWP1 expression and the abundance of several antioxidative proteins. Thus, we measured reactive oxygen species (ROS) in WWP1 OE and KD cells. Consistent with the proteome results, WWP1 OE reduced ROS levels, whereas KD increased them. These findings indicate that WWP1 is an obesity-inducible E3 ubiquitin ligase that can protect against obesity-associated oxidative stress in WAT.


Subject(s)
Adipocytes/metabolism , Ubiquitin-Protein Ligases/metabolism , 3T3-L1 Cells , Adipose Tissue, White/metabolism , Animals , Diet, High-Fat/adverse effects , Disease Models, Animal , Gene Knockdown Techniques , Genes, p53 , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Obesity/etiology , Obesity/genetics , Obesity/metabolism , Oxidative Stress , Proteome/genetics , Proteome/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Ubiquitin-Protein Ligases/antagonists & inhibitors , Ubiquitin-Protein Ligases/genetics , Up-Regulation
9.
Aging (Albany NY) ; 10(9): 2243-2251, 2018 09 16.
Article in English | MEDLINE | ID: mdl-30222593

ABSTRACT

It is widely accepted that caloric restriction (CR) extends lifespan and suppresses various pathophysiological changes. CR suppresses growth hormone/insulin-like growth factor signaling and mechanistic target of rapamycin complex 1 activity, activates sirtuin and enhances mitochondrial redox regulation, but the exact mechanisms are still under debate. In this review, we discuss the mechanisms of CR using evidence from studies of animals that were genetically modified according to recent advances in molecular and genetic technologies, from the viewpoint of the adaptive response hypothesis proposed by Holliday (1989). We then explain the beneficial actions of CR, classified according to whether they operate under feeding or fasting conditions.


Subject(s)
Aging , Caloric Restriction , Longevity , Adipose Tissue, White/metabolism , Animals , Animals, Genetically Modified , Mice , NF-E2-Related Factor 2/physiology , Neuropeptide Y/physiology , Receptors, Somatotropin/physiology , Sirtuins/physiology , TOR Serine-Threonine Kinases/physiology
10.
Amino Acids ; 50(5): 527-535, 2018 May.
Article in English | MEDLINE | ID: mdl-29523960

ABSTRACT

Alterations in adipocyte characteristics are highly implicated in the pathology of obesity. In a recent article, we demonstrated that high-fat diet-induced obesity impairs lysosomal function, thereby suppressing autophagy in mice white adipose tissue. Taurine, an amino acid naturally contained in the normal diet and existing ubiquitously in tissues, has been reported to improve insulin resistance and chronic inflammation in animal models, but underlying mechanisms remain unclear. From these findings, we hypothesized that improvement of obese pathology by taurine may be mediated through recovery of autophagy. In matured 3T3-L1 mouse adipocytes, treatment with taurine-promoted autophagy. Moreover, taurine-induced nuclear translocation of transcription factor EB (TFEB), a master regulator of autophagy- and lysosome-related factors. As this translocation is regulated by several kinase pathways, including extracellular signal-related kinase 1 and 2 (ERK1/2) and mechanistic target of rapamycin protein kinase complex 1 (MTORC1), we examined related signaling elements. Consequently, taurine-reduced phosphorylation levels of ERK1/2 but did not alter the phosphorylation of MTORC1 pathway-associated adenosine monophosphate-activated protein kinase or ribosomal protein S6 kinase. Taken together, these results suggest that taurine may enhance TFEB nuclear translocation through ERK1/2 to accelerate autophagy. The effect discovered in this study may represent a novel mechanism for the improvement of obesity-related pathology by taurine.


Subject(s)
Adipocytes/metabolism , Autophagy/drug effects , MAP Kinase Signaling System/drug effects , Taurine/pharmacology , Adipocytes/cytology , Animals , Cell Line , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Ribosomal Protein S6 Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL