Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 9(1): 15568, 2019 10 30.
Article in English | MEDLINE | ID: mdl-31666538

ABSTRACT

The population synchrony of tree seed production has attracted widespread attention in agriculture, forestry and ecosystem management. Oaks usually show synchronisation of irregular or intermittent sequences of acorn production, which is termed 'masting'. Tree crops such as citrus and pistachio show a clear two-year cycle (period-2) termed 'alternate bearing'. We identified period-3 dominant phase synchronisation in a population of Zelkova serrata. As 'period-3' is known to provide evidence to imply chaos in nonlinear science, the observed period-3 phase synchronisation of Zelkova serrata is an attractive real-world phenomenon that warrants investigation in terms of nonlinear dynamics. Using the Hilbert transform, we proposed a procedure to determine the fractions of periods underlying the survey data and distinguished the on-year (high yield year) and the off-year (low yield year) of the masting. We quantified the effects of pollen coupling, common environmental noise and individual variability on the phase synchronisation and demonstrated how the period-3 synchronisation emerges through a border-collision bifurcation process. In this paper, we propose a model that can describe diverse behaviours of seed production observed in many different tree species by changing its parameters.


Subject(s)
Magnoliopsida/physiology , Magnoliopsida/growth & development , Models, Biological , Nonlinear Dynamics , Seeds/growth & development
3.
Sci Rep ; 7: 39890, 2017 01 04.
Article in English | MEDLINE | ID: mdl-28051141

ABSTRACT

We investigated the theoretical possibility of applying phenomenon of synchronization of coupled nonlinear oscillators to control alternate bearing in citrus. The alternate bearing of fruit crops is a phenomenon in which a year of heavy yield is followed by an extremely light one. This phenomenon has been modeled previously by the resource budget model, which describes a typical nonlinear oscillator of the tent map type. We have demonstrated how direct coupling, which could be practically realized through grafting, contributes to the nonlinear dynamics of alternate bearing, especially phase synchronization. Our results show enhancement of out-of-phase synchronization in production, which depends on initial conditions obtained under the given system parameters. Based on these numerical experiments, we propose a new method to control alternate bearing, say in citrus, thereby enabling stable fruit production. The feasibility of validating the current results through field experimentation is also discussed.


Subject(s)
Citrus/growth & development , Nonlinear Dynamics , Crops, Agricultural , Fruit/growth & development
4.
Ecol Evol ; 4(6): 766-75, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24683459

ABSTRACT

Disturbance caused by large herbivores can affect the relative importance of ecological processes in determining community assembly and may cause a systematic loss of biodiversity across scales. To examine changes in the community assembly pattern caused by an overabundance of large herbivores in Japan, we analyzed community composition data from before and after the overabundance occurred. The community assembly pattern becomes more random after the deer overabundance. In addition, result of variation partitioning revealed decrease in importance of environmental processes and increase in importance of spatial processes. However, response of turnover rate, niche breadth, and niche overlap was heterogeneous, according to scale of each environmental gradient. Our results emphasize the importance of conserving habitat specialists that represent the local environment (habitat type and topography) at various altitudinal ranges to maintain biodiversity at regional scales under the increasing pressure of large herbivores.

SELECTION OF CITATIONS
SEARCH DETAIL
...