Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Publication year range
1.
Magn Reson Med Sci ; 21(3): 517-524, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-34305081

ABSTRACT

The volumes of intracranial tissues of 40 healthy volunteers acquired from 0.3- and 3-T scanners were compared using intraclass correlation coefficients, correlation analyses, and Bland-Altman analyses. We found high intraclass correlation coefficients, high Pearson's correlation coefficients, and low percentage biases in all tissues and most of the brain regions, although small differences were observed in some areas. These findings may support the validity of brain volumetry with low-field magnetic resonance imaging.


Subject(s)
Imaging, Three-Dimensional , Magnetic Resonance Imaging , Brain/diagnostic imaging , Humans , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/methods , Reproducibility of Results
2.
Magn Reson Imaging ; 78: 90-97, 2021 05.
Article in English | MEDLINE | ID: mdl-33444595

ABSTRACT

INTRODUCTION: Recently, three-dimensional (3D) quantitative synthetic magnetic resonance imaging (MRI), which quantifies tissue properties and creates multiple contrast-weighted images, has been enabled by 3D-quantification using an interleaved Look-Locker acquisition sequence with a T2 preparation pulse (3D-QALAS). However, the relatively long scan time has hindered its introduction into clinical practice. A hybrid of compressed sensing and parallel imaging (Compressed sensing-sensitivity encoding: CS-SENSE) can accelerate 3D-QALAS; however, whether CS-SENSE affects the quantitative values acquired by 3D-QALAS remains unexplored. Therefore, this study aimed to examine the effects of reduction factors of CS-SENSE (RCSS) on the quantitative values derived from 3D-QALAS, by assessing the signal-to-noise ratio (SNR) of the quantitative maps, as well as accuracy (linearity and bias) and repeatability of measured quantitative values. METHODS: In this study, the ISMRM/NIST standardized phantom was scanned on a 1.5-T MRI scanner with 3D-QALAS using RCSS in the range between 1 and 3, with intervals of 0.2, and between 3 and 10 with intervals of 0.5. The T1, T2, and proton density (PD) values were calculated from the imaging data. For each quantitative value, the SNR, the coefficient of determination (R2) of a linear regression model, the error rate, and the within-subject coefficient of variation (wCV) were calculated for each RCSS and compared. RESULTS: Within the clinically-relevant dynamic range of the brain of T1 and T2 (T1: 200-1400 ms; T2; 50-400 ms) and PD value of 15-100% calculated from 3D-QALAS, the effects of RCSS on quantitative values was small between 1 and 2.8, with SNR ≧ 10, R2 ≧ 0.9, error rate ≦ 10%, and wCV ≦ 10%, except for T2 values of 186.1 and 258.4 ms. CONCLUSIONS: CS-SENSE enabled the reduction of the scan time of 3D-QALAS by 63.5% (RCSS = 2.8) while maintaining the SNR of quantitative maps and accuracy and repeatability of the quantitative values.


Subject(s)
Imaging, Three-Dimensional , Magnetic Resonance Imaging/instrumentation , Phantoms, Imaging , Adult , Brain/diagnostic imaging , Female , Humans , Linear Models , Male , Signal-To-Noise Ratio
3.
Jpn J Radiol ; 37(8): 579-589, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31230186

ABSTRACT

PURPOSE: Image contrast differs between conventional multislice turbo spin echo (conventional TSE) and multiband turbo spin echo (SMS-TSE). Difference in time interval between excitations for adjacent slices (SETI) might cause this difference. This study aimed to evaluate the influence of SETI on MT effect for conventional TSE and compare conventional TSE with SMS-TSE in this respect. MATERIALS AND METHODS: Three different agar concentration phantoms were scanned with conventional TSE by adjusting SETI and TR. Signal change for different SETI was evaluated using Pearson's correlation analysis. SMS-TSE was acquired by changing TR similarly. Three human volunteers were scanned with similar settings to evaluate reproducibility of the phantom results in human brain. RESULTS: In conventional TSE, shorter SETI induced larger signal reduction. Longer TR and higher agar concentration emphasized this characteristic. Significant linear correlation (P < 0.05) was found in the major cases. The SMS-TSE signal intensity in each TR and phantom was smaller than the assumable levels in conventional TSE when the slices were simultaneously excited. Similar characteristic was observed in human brain. CONCLUSION: Shorter SETI results in larger MT effect in conventional TSE. The contrast change in SMS-TSE was larger than the supposable level from simultaneous excitation, which needs consideration in clinics.


Subject(s)
Brain/anatomy & histology , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Adult , Humans , Male , Phantoms, Imaging , Reproducibility of Results
4.
Nihon Hoshasen Gijutsu Gakkai Zasshi ; 73(11): 1140-1146, 2017.
Article in Japanese | MEDLINE | ID: mdl-29151547

ABSTRACT

BACKGROUND: Invasive-fractional flow reserve (FFR) is the reference standard to evaluate functional ischemia of coronary arteries, and is used to decide if percutaneous transluminal coronary angioplasty is necessary. Recently, computed tomography-derived FFR (CT-FFR) is emerged as an alternative non-invasive method. OBJECTIVES: To evaluate the effect of reconstruction methods and image parameters on the accuracy of CT-FFR calculation. METHODS: A total of 26 segments in the consecutive 10 coronary CT angiography (CCTA) studies were evaluated. All studies were reconstructed using three different techniques: 1) filtered back projection (FBP), 2) adaptive iterative dose reduction 3D (AIDR 3D), and 3) forward projected model-based iterative reconstruction solution (FIRST). Vessel segmentation was performed automatically by CT-FFR software, with manual adjustment if necessary. Calculated CT-FFR was compared with the invasive FFR data. RESULTS: Compared to FBP, AIDR 3D and FIRST resulted in more successful automatic segmentation. When using FIRST, 7 segments (27%) were completed without manual adjustment. These segments had relatively larger vessel diameter, higher CT number, and lower noise. The difference between the calculated CT-FFR and invasive-FFR was 0.02±0.01. Among the remaining, 10 segments (38%) required manual adjustments of centerline, 7 segments (27%) required manual adjustments of contour, and 2 segments (8%) did not reach to the CT-FFR calculation. CONCLUSION: AIDR 3D and FIRST were useful for reliable automatic segmentation and analysis of CT-FFR.


Subject(s)
Coronary Angiography/methods , Coronary Vessels/diagnostic imaging , Tomography, X-Ray Computed/methods , Cardiac Catheters , Female , Humans , Imaging, Three-Dimensional , Male , Middle Aged
5.
Radiol Phys Technol ; 6(2): 343-8, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23536232

ABSTRACT

Diffusional kurtosis imaging (DKI) is a new technique based on non-Gaussian water diffusion analysis. However, the original DKI protocol (six b values and 30 motion-probing gradient (MPG) directions) requires more than 10 min of scanning time, which is too long for daily clinical use. We aimed to find suitable b value, MPG direction, and diffusion time settings for faster DKI. Four normal healthy subjects participated in the study. All DKI data sets were acquired on a clinical 3T-MRI scanner (Philips Medical Systems) with use of three protocols of 0-7500 s/mm(2) b values, 6-32 MPG directions, and 23-80 ms diffusion time. There was a remarkable difference in the standard deviation (SD) of the mean DK values in the number of MPG directions. The mean DK values were significantly higher in the posterior limb of the internal capsule (p = 0.003, r = 0.924) and thalamus (p = 0.005, r = 0.903), whereas the mean DK values of the cerebrospinal fluid (CSF) (p = 0.001, r = -0.976) were significantly lower when we used a longer diffusion time. Our results indicate that the SD of the mean DK values was higher in 15 MPG directions than in 20 MPG directions and more. Because the mean DK values of the CSF were significantly lower when we used longer diffusion times, we expect longer diffusion times to be useful for DKI. We propose the following imaging parameters for clinical use: 0, 1000, and 2000 s/mm(2) b values; 20 MPG directions; Δ/δ 45.3/13.3 ms.


Subject(s)
Brain/anatomy & histology , Cerebrospinal Fluid/cytology , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Adult , Algorithms , Diffusion , Female , Humans , Male , Young Adult
6.
Jpn J Radiol ; 30(2): 116-9, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22200915

ABSTRACT

PURPOSE: The aim of this study was to elucidate the distribution of estimated glomerular filtration rate (eGFR) values in patients who underwent gadolinium-based contrast agent (GBCA)-enhanced magnetic resonance imaging (MRI) at different types of hospitals. MATERIALS AND METHODS: We retrospectively studied 2,550 patients who underwent MRI at five institutions. We recorded the date and value of each patient's eGFR test. The distribution of eGFR values was compared with that in the general Japanese population. RESULTS: A total of 84.3% of patients had their eGFRs evaluated before GBCA-enhanced MRI. Of these, 84.7% were evaluated within 3 months before the GBCA-enhanced MRI, and 1.3% were evaluated on the day of the GBCA-enhanced MRI. A total of 87.2% of patients tested had an eGFR of ≥60 ml/min/1.73 m(2); 12.8% had an eGFR of <60 and ≥30 ml/min/1.73 m(2), and no patients had an eGFR of <30 ml/min/1.73 m(2). CONCLUSION: The rate of renal function evaluation differed among hospitals. The prevalence of low eGFR values was greater in Juntendo Tokyo Koto Geriatric Medical Center than in the other hospitals, and the prevalence of low eGFR values was greater in patients who underwent GBCA-enhanced MRI than in the general Japanese population.


Subject(s)
Contrast Media/adverse effects , Gadolinium/adverse effects , Glomerular Filtration Rate/drug effects , Magnetic Resonance Imaging , Renal Insufficiency/physiopathology , Aged , Female , Humans , Male , Middle Aged , Nephrogenic Fibrosing Dermopathy/chemically induced , Renal Insufficiency/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL
...