Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 139(4): 1464-1471, 2017 02 01.
Article in English | MEDLINE | ID: mdl-27626629

ABSTRACT

The galvanic replacement reaction is a highly versatile approach for the creation of a variety of nanostructured materials. However, the majority of reports are limited to the replacement of metallic nanoparticles or metal surfaces. Here we extend this elegant approach and describe the galvanic replacement of the liquid metal alloy galinstan with Ag and Au. This is achieved at a macrosized droplet to create a liquid metal marble that comprises a liquid metal core and a solid metal shell, whereby the morphology of the outer shell is determined by the concentration of metallic ions used in the solution during the galvanic replacement process. In principle, this allows one to recover precious metal ions from solution in their metallic form, which are immobilized on the liquid metal and therefore easy to recover. The reaction is also undertaken at liquid metal microdroplets created via sonication to produce Ag- and Au-based galinstan nanorice particles. These materials are characterized with SEM, XRD, TEM, SAED, EDX, XPS, UV-visible spectroscopy, and open-circuit potential versus time experiments to understand the galvanic replacement process. Finally, the nanosized materials are investigated for their catalytic activity toward the reduction of methylene blue in the presence of sodium borohydride. This approach illustrates a new avenue of research for the galvanic replacement process and, in principle, could be applied to many more systems.

2.
Chempluschem ; 81(4): 378-383, 2016 Apr.
Article in English | MEDLINE | ID: mdl-31968752

ABSTRACT

The fabrication of a superhydrophobic nylon textile based on the organic charge-transfer complex CuTCNAQ (TCNAQ=11,11,12,12-tetracyanoanthraquinodimethane) is reported. The nylon fabric, which is metallized with copper, undergoes a spontaneous chemical reaction with TCNAQ dissolved in acetonitrile to form nanorods of CuTCNAQ that are intertwined over the entire surface of the fabric. This creates the necessary micro- and nanoscale roughness that often allows the Cassie-Baxter state to be obtained with high robustness, thereby achieving a superhydrophobic/superoleophilic surface without the need for a fluorinated surface. The material is characterized with SEM, FTIR spectroscopy, and X-ray photoelectron spectroscopy, and investigated for its ability to separate oil and water in two modes, namely through filtration and as an absorbent material. It is found that the fabric can separate dichloromethane, olive oil, and crude oil from water, and reduce the water content of the oil during the separation process. The fabric is reusable, highly durable, and tolerant to conditions such as seawater, hydrochloric acid, and extensive time periods on the shelf. Given that CuTCNAQ is a copper-based semiconductor, there may also be the possibility of other uses in areas such as photocatalysis and antibacterial applications.

3.
Chem Commun (Camb) ; 51(74): 14026-9, 2015 Sep 25.
Article in English | MEDLINE | ID: mdl-26235112

ABSTRACT

A facile route to prepare catalytically active materials from a galinstan liquid metal alloy is introduced. Sonicating liquid galinstan in alkaline solution or treating it in reducing media results in the creation of solid In/Sn rich microspheres that show catalytic activity toward both potassium ferricyanide and 4-nitrophenol reduction.

4.
Dalton Trans ; 42(40): 14568-75, 2013 Oct 28.
Article in English | MEDLINE | ID: mdl-23982722

ABSTRACT

The MOCVD assisted formation of nested WS2 inorganic fullerenes (IF-WS2) was performed by enhancing surface diffusion with iodine, and fullerene growth was monitored by taking TEM snapshots of intermediate products. The internal structure of the core-shell nanoparticles was studied using scanning electron microscopy (SEM) after cross-cutting with a focused ion beam (FIB). Lamellar reaction intermediates were found occluded in the fullerene particles. In contrast to carbon fullerenes, layered metal chalcogenides prefer the formation of planar, plate-like structures where the dangling bonds at the edges are stabilized by excess S atoms. The effects of the reaction and annealing temperatures on the composition and morphology of the final product were investigated, and the strength of the WS2 shell was measured by intermittent contact-mode AFM. The encapsulated lamellar structures inside the hollow spheres may lead to enhanced tribological activities.

5.
Dalton Trans ; 42(15): 5292-7, 2013 Apr 21.
Article in English | MEDLINE | ID: mdl-23403553

ABSTRACT

Enlightened by the discovery of graphenes, a variety of inorganic analogues have been synthesized and characterized in recent years. Solvated Nb1-xWxS2 analogues of graphene-type sheets were prepared by lithiation and exfoliation of multistacked Nb1-xWxS2 coin roll nanowires (CRNWs), followed by in situ functionalization with gold nanoparticles to synthesize gold-loaded Nb1-xWxS2/Au nanocomposites. The Nb1-xWxS2 nanosheets and the corresponding Nb1-xWxS2/Au nanocomposites were characterized by high resolution electron microscopy (HRTEM), energy-dispersive X-ray spectroscopy (EDX), scanning transmission electron microscopy (STEM), dynamic light scattering (DLS) and scanning force microscopy (AFM). The graphene-type sheets are stable in water and other solvents and can be functionalized similarly as chalcogen-terminated surfaces (e.g. with Au nanoparticles).

SELECTION OF CITATIONS
SEARCH DETAIL
...