Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(23)2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38069024

ABSTRACT

Nodule bacteria (rhizobia) represent a suitable model to address a range of fundamental genetic problems, including the impacts of natural selection on the evolution of symbiotic microorganisms. Rhizobia possess multipartite genomes in which symbiotically specialized (sym) genes differ from core genes in their natural histories. Diversification of sym genes is responsible for rhizobia microevolution, which depends on host-induced natural selection. By contrast, diversification of core genes is responsible for rhizobia speciation, which occurs under the impacts of still unknown selective factors. In this paper, we demonstrate that in goat's rue rhizobia (Neorhizobium galegae) populations collected at North Caucasus, representing two host-specific biovars orientalis and officianalis (N2-fixing symbionts of Galega orientalis and G. officinalis), the evolutionary mechanisms are different for core and sym genes. In both N. galegae biovars, core genes are more polymorphic than sym genes. In bv. orientalis, the evolution of core genes occurs under the impacts of driving selection (dN/dS > 1), while the evolution of sym genes is close to neutral (dN/dS ≈ 1). In bv. officinalis, the evolution of core genes is neutral, while for sym genes, it is dependent on purifying selection (dN/dS < 1). A marked phylogenetic congruence of core and sym genes revealed using ANI analysis may be due to a low intensity of gene transfer within and between N. galegae biovars. Polymorphism in both gene groups and the impacts of driving selection on core gene evolution are more pronounced in bv. orientalis than in bv. officianalis, reflecting the diversities of their respective host plant species. In bv. orientalis, a highly significant (P0 < 0.001) positive correlation is revealed between the p-distance and dN/dS values for core genes, while in bv. officinalis, this correlation is of low significance (0.05 < P0 < 0.10). For sym genes, the correlation between p-distance and dN/dS values is negative in bv. officinalis but is not revealed in bv. orientalis. These data, along with the functional annotation of core genes implemented using Gene Ontology tools, suggest that the evolution of bv. officinalis is based mostly on adaptation for in planta niches while in bv. orientalis, evolution presumably depends on adaptation for soil niches. New insights into the tradeoff between natural selection and genetic diversity are presented, suggesting that gene nucleotide polymorphism may be extended by driving selection only in ecologically versatile organisms capable of supporting a broad spectrum of gene alleles in their gene pools.


Subject(s)
Galega , Rhizobiaceae , Rhizobium , Rhizobiaceae/genetics , Phylogeny , Rhizobium/genetics , Polymorphism, Genetic , Symbiosis/genetics , Evolution, Molecular
2.
Int J Mol Sci ; 23(9)2022 Apr 28.
Article in English | MEDLINE | ID: mdl-35563261

ABSTRACT

Nucleosomes are basic units of DNA packing in eukaryotes. Their structure is well conserved from yeast to human and consists of the histone octamer core and 147 bp DNA wrapped around it. Nucleosomes are bound to a majority of the eukaryotic genomic DNA, including its regulatory regions. Hence, they also play a major role in gene regulation. For the latter, their precise positioning on DNA is essential. In the present paper, we describe Galaxy dnpatterntools-software package for nucleosome DNA sequence analysis and mapping. This software will be useful for computational biologists practitioners to conduct more profound studies of gene regulatory mechanisms.


Subject(s)
Chromatin Assembly and Disassembly , Nucleosomes , DNA/metabolism , Humans , Nucleosomes/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Sequence Analysis, DNA
3.
PLoS Comput Biol ; 16(1): e1007365, 2020 01.
Article in English | MEDLINE | ID: mdl-31986131

ABSTRACT

Nucleosome positioning DNA sequence patterns (NPS)-usually distributions of particular dinucleotides or other sequence elements in nucleosomal DNA-at least partially determine chromatin structure and arrangements of nucleosomes that in turn affect gene expression. Statistically, NPS are defined as oscillations of the dinucleotide periodicity of about 10 base pairs (bp) which reflects the double helix period. We compared the nucleosomal DNA patterns in mouse, human and yeast organisms and observed few distinctive patterns that can be termed as packing and regulatory referring to distinctive modes of chromatin function. For the first time the NPS patterns in nucleus accumbens cells (NAC) in mouse brain were characterized and compared to the patterns in human CD4+ and apoptotic lymphocyte cells and well studied patterns in yeast. The NPS patterns in human CD4+ cells and mouse brain cells had very high positive correlation. However, there was no correlation between them and patterns in human apoptotic lymphocyte cells and yeast, but the latter two were highly correlated with each other. By their dinucleotide arrangements the analyzed NPS patterns classified into stable canonical WW/SS (W = A or T and S = C or G dinucleotide) and less stable RR/YY (R = A or G and Y = C or T dinucleotide) patterns and anti-patterns. In the anti-patterns positioning of the dinucleotides is flipped compared to those in the regular patterns. Stable canonical WW/SS patterns and anti-patterns are ubiquitously observed in many organisms and they had high resemblance between yeast and human apoptotic cells. Less stable RR/YY patterns had higher positive correlation between mouse and normal human cells. Our analysis and evidence from scientific literature lead to idea that various distinct patterns in nucleosomal DNA can be related to the two roles of the chromatin: packing (WW/SS) and regulatory (RR/YY and "anti").


Subject(s)
Chromatin , DNA , Nucleosomes , Animals , Base Sequence , Cells, Cultured , Chromatin/chemistry , Chromatin/genetics , Chromatin/metabolism , Computational Biology , DNA/chemistry , DNA/genetics , DNA/metabolism , Humans , Mice , Nucleosomes/chemistry , Nucleosomes/genetics , Nucleosomes/metabolism , Saccharomyces cerevisiae/genetics , Software
4.
PLoS Comput Biol ; 10(7): e1003760, 2014 Jul.
Article in English | MEDLINE | ID: mdl-25077608

ABSTRACT

We analyzed two sets of human CD4+ nucleosomal DNA directly sequenced by Illumina (Solexa) high throughput sequencing method. The first set has ∼40 M sequences and was produced from the normal CD4+ T lymphocytes by micrococcal nuclease. The second set has ∼44 M sequences and was obtained from peripheral blood lymphocytes by apoptotic nucleases. The different nucleosome sets showed similar dinucleotide positioning AA/TT, GG/CC, and RR/YY (R is purine, Y--pyrimidine) patterns with periods of 10-10.4 bp. Peaks of GG/CC and AA/TT patterns were shifted by 5 bp from each other. Two types of promoters in H. sapiens: AT and GC-rich were identified. AT-rich promoters in apoptotic cell had +1 nucleosome shifts 50-60 bp downstream from those in normal lymphocytes. GC-rich promoters in apoptotic cells lost 80% of nucleosomes around transcription start sites as well as in total DNA. Nucleosome positioning was predicted by combination of {AA, TT}, {GG, CC}, {WW, SS} and {RR, YY} patterns. In our study we found that the combinations of {AA, TT} and {GG, CC} provide the best results and successfully mapped 33% of nucleosomes 147 bp long with precision ±15 bp (only 31/147 or 21% is expected).


Subject(s)
Apoptosis/genetics , Base Composition/genetics , Lymphocytes , Nucleosomes/genetics , Promoter Regions, Genetic/genetics , DNA/analysis , DNA/genetics , High-Throughput Nucleotide Sequencing , Humans
5.
BMC Microbiol ; 13: 116, 2013 May 25.
Article in English | MEDLINE | ID: mdl-23705844

ABSTRACT

BACKGROUND: Human milk contains a diverse population of bacteria that likely influences colonization of the infant gastrointestinal tract. Recent studies, however, have been limited to characterization of this microbial community by 16S rRNA analysis. In the present study, a metagenomic approach using Illumina sequencing of a pooled milk sample (ten donors) was employed to determine the genera of bacteria and the types of bacterial open reading frames in human milk that may influence bacterial establishment and stability in this primal food matrix. The human milk metagenome was also compared to that of breast-fed and formula-fed infants' feces (n = 5, each) and mothers' feces (n = 3) at the phylum level and at a functional level using open reading frame abundance. Additionally, immune-modulatory bacterial-DNA motifs were also searched for within human milk. RESULTS: The bacterial community in human milk contained over 360 prokaryotic genera, with sequences aligning predominantly to the phyla of Proteobacteria (65%) and Firmicutes (34%), and the genera of Pseudomonas (61.1%), Staphylococcus (33.4%) and Streptococcus (0.5%). From assembled human milk-derived contigs, 30,128 open reading frames were annotated and assigned to functional categories. When compared to the metagenome of infants' and mothers' feces, the human milk metagenome was less diverse at the phylum level, and contained more open reading frames associated with nitrogen metabolism, membrane transport and stress response (P < 0.05). The human milk metagenome also contained a similar occurrence of immune-modulatory DNA motifs to that of infants' and mothers' fecal metagenomes. CONCLUSIONS: Our results further expand the complexity of the human milk metagenome and enforce the benefits of human milk ingestion on the microbial colonization of the infant gut and immunity. Discovery of immune-modulatory motifs in the metagenome of human milk indicates more exhaustive analyses of the functionality of the human milk metagenome are warranted.


Subject(s)
Bacteria/classification , Bacteria/genetics , Biota , Metagenome , Milk, Human/microbiology , Bacteria/isolation & purification , Breast Feeding , Female , Gene Expression Profiling , Humans , Infant , Infant Formula , Open Reading Frames
6.
Genome Res ; 21(11): 1863-71, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21750105

ABSTRACT

Precise positioning of nucleosomes along DNA is important for a variety of gene regulatory processes. Among the factors directing nucleosome positioning, the DNA sequence is highly important. Two main classes of nucleosome positioning sequence (NPS) patterns have previously been described. In the first class, AA, TT, and other WW dinucleotides (where W is A or T) tend to occur together (in-phase) in the major groove of DNA closest to the histone octamer surface, while SS dinucleotides (where S is G or C) are predominantly positioned in the major groove facing outward. In the second class, AA and TT are structurally separated (AA backbone near the histone octamer, and TT backbone further away), but grouped with other RR (where R is purine A or G) and YY (where Y is pyrimidine C or T) dinucleotides. As a result, the RR/YY pattern includes counter-phase AA/TT distributions. We describe here anti-NPS patterns, which are inverse to the conventional NPS patterns: WW runs inverse to SS, and RR inverse to YY. Evidence for the biological relevance of anti-NPS patterns is presented.


Subject(s)
DNA, Fungal/metabolism , Genome, Fungal , Nucleosomes/metabolism , Gene Expression Regulation, Fungal , Nucleotide Motifs , Promoter Regions, Genetic , Saccharomyces/genetics , Saccharomyces/metabolism
7.
Comput Biol Chem ; 33(4): 275-82, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19646927

ABSTRACT

The advancement in Escherichia coli genome research has made the information regarding transcription start sites of many genes available. A study relying on the availability of transcription start locations was performed. The first question addressed was what an average DNA curvature profile upstream of genes would look like when these genes are aligned by transcription start sites in comparison to alignment by translation start sites. Since it was hypothesized that curvature plays a role in transcription regulation, the expectation was that curvature measurements relative to transcription starts, rather than translation, should strengthen the signal. Our study justified this expectation. The second question aimed to clarify the relation between DNA curvature and promoter strength. Through clustering based on DNA curvature profiles along promoter regions, a strong positive correlation between the promoter strength and the curved DNA was found. The third question dealt with dinucleotide periodicity in E. coli to see whether a periodicity pattern specific to promoter regions exists. Such unknown pattern might shed new light on transcription regulation mechanisms in E. coli. A sequence periodicity of about 11 bp is characteristic to the whole E. coli genome, and is especially well-expressed in intergenic regions. Here it was shown that regions of the size of about 100-150 bp centered 70-100 bp upstream to transcription starts carry hidden periodicity with a period of about 10.3 bp.


Subject(s)
Escherichia coli/genetics , Gene Expression Regulation, Bacterial , Promoter Regions, Genetic , Transcription, Genetic , DNA, Intergenic , Terminator Regions, Genetic
8.
Nucleic Acids Res ; 34(8): 2316-27, 2006.
Article in English | MEDLINE | ID: mdl-16679450

ABSTRACT

It is known that DNA curvature plays a certain role in gene regulation. The distribution of curved DNA in promoter regions is evolutionarily preserved, and it is mainly determined by temperature of habitat. However, very little is known on the distribution of DNA curvature in termination sites. Our main objective was to comprehensively analyze distribution of curved sequences upstream and downstream to the coding genes in prokaryotic genomes. We applied CURVATURE software to 170 complete prokaryotic genomes in a search for possible typical distribution of DNA curvature around starts and ends of genes. Performing cluster analyses and other statistical tests, we obtained novel results regarding various factors influencing curvature distribution in intergenic regions, such as growth temperature, A+T composition and genome size. We also analyzed intergenic regions between converging genes in 15 selected genomes. The results show that six genomes presented peaks of curvature excess larger than 3 SDs. Insufficient statistics did not allow us to draw further conclusion. Our hypothesis is that DNA curvature could affect transcription termination in many prokaryotes either directly, through contacts with RNA polymerase, or indirectly, via contacts with some regulatory proteins.


Subject(s)
DNA, Archaeal/chemistry , DNA, Bacterial/chemistry , Promoter Regions, Genetic , Terminator Regions, Genetic , Cluster Analysis , Genome, Archaeal , Genome, Bacterial , Genomics , Nucleic Acid Conformation
9.
BMC Mol Biol ; 5: 14, 2004 Aug 26.
Article in English | MEDLINE | ID: mdl-15333140

ABSTRACT

BACKGROUND: Sequence periodicity with a period close to the DNA helical repeat is a very basic genomic property. This genomic feature was demonstrated for many prokaryotic genomes. The Escherichia coli sequences display the period close to 11 base pairs. RESULTS: Here we demonstrate that practically only ApA/TpT dinucleotides contribute to overall dinucleotide periodicity in Escherichia coli. The noncoding sequences reveal this periodicity much more prominently compared to protein-coding sequences. The sequence periodicity of ApC/GpT, ApT and GpC dinucleotides along the Escherichia coli K-12 is found to be located as well mainly within the intergenic regions. CONCLUSIONS: The observed concentration of the dinucleotide sequence periodicity in the intergenic regions of E. coli suggests that the periodicity is a typical property of prokaryotic intergenic regions. We suppose that this preferential distribution of dinucleotide periodicity serves many biological functions; first of all, the regulation of transcription.


Subject(s)
DNA, Intergenic/genetics , Escherichia coli K12/genetics , Periodicity , Base Composition/genetics , DNA, Bacterial/genetics , Fourier Analysis , Genome, Bacterial
10.
In Silico Biol ; 4(3): 361-75, 2004.
Article in English | MEDLINE | ID: mdl-15724286

ABSTRACT

DNA curvature is known to play a biological role in gene regulation, in particular, initiation of transcription. We applied the software CURVATURE based on the wedge model to predict whether promoter regions of certain prokaryotes may be characterized by higher intrinsic DNA curvature located within or upstream to these regions. The main purpose was to verify our earlier hypothesis that the DNA curvature plays a biological role in gene regulation in mesophilic as compared to hyperthermophilic prokaryotes, i.e., DNA curvature presumably has a functional adaptive significance determined by temperature selection. Therefore, we analyzed all available complete prokaryotic genomes. The analysis showed that there is a group of genomes with a relatively high average DNA curvature upstream of start of genes. Remarkably, all organisms of this group appeared to be mesophilic, which is a full confirmation of the former hypothesis. The conservative patterns of genomic curvature distribution across different mesophilic bacterial and archaeal genomes presented in this study provide a new, convincing indication that curved DNA is evolutionarily preserved and determined by temperature selection. Moreover, we found a rather peculiar property of hyperthermophilic prokaryotes: the coding regions are predicted to be significantly more curved than it would be expected from their dinucleotide composition.


Subject(s)
DNA, Archaeal/chemistry , DNA, Bacterial/chemistry , Genome, Archaeal , Genome, Bacterial , Prokaryotic Cells , Nucleic Acid Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...