Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 23(24): 30618-33, 2015 Nov 30.
Article in English | MEDLINE | ID: mdl-26698694

ABSTRACT

A new type of very compact optical element for a near-eye display (NED) that uses a pair of microlens arrays (MLAs) is presented. The MLA pair works in conjunction to form a magnifier (collimator). The purpose of this is to aid in the accommodation of the eye on a head-up display that is positioned within several centimeters from the eye; the MLA pair collimates the light rays departing from the display thereby generating a virtual image of the display at optical infinity. By using the MLA pair, we are able to make a collimator that retains a thin profile of about 2 mm in thickness with a system focal length of about 7 mm.


Subject(s)
Computer Terminals , Eyeglasses , Imaging, Three-Dimensional/instrumentation , Lenses , Man-Machine Systems , User-Computer Interface , Equipment Design , Equipment Failure Analysis , Miniaturization
2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2015: 502-5, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26736309

ABSTRACT

Fitness activity classification on wearable devices can provide activity-specific information and generate more accurate performance metrics. Recently, optical head-mounted displays (OHMD) like Google Glass, Sony SmartEyeglass and Recon Jet have emerged. This paper presents a novel method to classify fitness activities using head-worn accelerometer, barometric pressure sensor and GPS, with comparisons to other common mounting locations on the body. Using multiclass SVM on head-worn sensors, we obtained an average F-score of 96.66% for classifying standing, walking, running, ascending/descending stairs and cycling. The best sensor location combinations were found to be on the ankle plus another upper body location. Using three or more sensors did not show a notable improvement over the best two-sensor combinations.


Subject(s)
Exercise , Humans , Posture , Support Vector Machine
3.
Opt Express ; 16(10): 7361-8, 2008 May 12.
Article in English | MEDLINE | ID: mdl-18545441

ABSTRACT

We introduce a new concept to improve the contrast and peak brightness of conventional data projectors. Our method provides a non-homogenous light source by dynamically directing fractions of the light from the projector lamp before it reaches the display mechanism. This will supply more light to the areas that need it most, at the expense of the darker parts of the image. In effect, this method will produce a low resolution version of the image onto the image-forming element. To manipulate the light in this manner, we propose using an intermediate array of microelectromechanical system (MEMS) mirrors. By directing the light away from the dark parts earlier in the display chain, the amount of light that needs to be blocked will be reduced, thus decreasing the black level of the final image. Moreover, the ability to dynamically allocate more light to the bright parts of the image will allow for peak brightness higher than the average maximum brightness of display.

SELECTION OF CITATIONS
SEARCH DETAIL
...