Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters










Publication year range
1.
J Ethnopharmacol ; 332: 118348, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-38762211

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Tokishakuyakusan (TSS), a traditional Kampo medicine, can effectively alleviate symptoms unique to women, such as menstrual pain and menopausal symptoms, and this effect is believed to be related to its ability to increase the secretion of female hormones. TSS is also believed to be effective against skin pigmentation. However, no studies have examined the effect of TSS on pigmentation. AIM OF THE STUDY: In this study, we conducted basic research to determine the effects of TSS on pigmentation. MATERIALS AND METHODS: Female HRM-2 mice were given free access to a normal diet or a TSS-containing diet for 7 weeks. For 3 weeks starting from the 4th week of treatment, the back of the skin was irradiated with ultraviolet (UV) light, and the melanin level was measured. The expression levels of melanogenesis-related genes and inflammatory markers in the skin were analyzed. RESULTS: The melanin level in the skin of the mice exposed to UV radiation was approximately three times greater than that in the skin of the mice in the non-UV-irradiated group, confirming pigmentation due to UV irradiation. The protein expression levels of tyrosinase (Tyr), tyrosinase-related protein-1 (Tyrp1), and dopachrome tautomerase (Dct), which are important for melanin production, were significantly greater in the UV irradiation group than in the non-UV irradiation group. In contrast, the amount of skin melanin in the mice treated with TSS was significantly lower than that in the UV-irradiated group, and the expression levels of melanogenesis-related enzymes were also lower. Furthermore, TSS significantly decreased the expression of microphthalmia transcription factor (Mitf), a transcription factor for melanogenesis-related enzymes, and the inflammatory cytokines interleukin-1ß and interleukin-6. CONCLUSIONS: TSS inhibits melanin production in melanocytes by suppressing the increase in the expression of melanogenesis-related enzymes caused by UV irradiation. These findings suggested that this effect of TSS is exerted through the combined regulation of MITF expression and anti-inflammatory responses.


Subject(s)
Drugs, Chinese Herbal , Melanins , Monophenol Monooxygenase , Skin Pigmentation , Ultraviolet Rays , Animals , Ultraviolet Rays/adverse effects , Melanins/biosynthesis , Melanins/metabolism , Skin Pigmentation/drug effects , Skin Pigmentation/radiation effects , Female , Mice , Monophenol Monooxygenase/metabolism , Drugs, Chinese Herbal/pharmacology , Skin/drug effects , Skin/radiation effects , Skin/metabolism , Microphthalmia-Associated Transcription Factor/metabolism , Microphthalmia-Associated Transcription Factor/genetics , Medicine, Kampo , Intramolecular Oxidoreductases/metabolism , Intramolecular Oxidoreductases/genetics , Mice, Hairless , Melanogenesis , Membrane Glycoproteins , Oxidoreductases
2.
J Dermatol ; 51(3): 419-428, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38087767

ABSTRACT

The gut microbiota changes greatly at the onset of disease, and the importance of intestinal bacteria has been highlighted. The gut microbiota also changes greatly with aging. Aging causes skin dryness, but it is not known how changes in the gut microbiota with aging affects the expression of genes that are important for maintaining skin function. In this study, we investigated how age-related changes in gut microbiota affect the expression of genes that regulate skin function. The gut microbiotas from young mice and aged mice were transplanted into germ-free mice (fecal microbiota transplantation [FMT]). These recipient mice were designated FMT-young mice and FMT-old mice respectively, and the expression levels of genes important for maintaining skin function were analyzed. The dermal water content was significantly lower in old mice than that in young mice, indicating dry skin. The gut microbiota significantly differed between old mice and young mice. The water channel aquaporin-3 (Aqp3) expression level in the skin of FMT-old mice was significantly higher than that in FMT-young mice. In addition, among the genes that play an important role in maintaining skin function, the expression levels of those encoding ceramide-degrading enzyme, ceramide synthase, hyaluronic acid-degrading enzyme, and Type I collagen were also significantly higher in FMT-old mice than in FMT-young mice. It was revealed that the gut microbiota, which changes with age, regulates the expression levels of genes related to skin function, including AQP3.


Subject(s)
Gastrointestinal Microbiome , Animals , Mice , Gastrointestinal Microbiome/genetics , Fecal Microbiota Transplantation
3.
Traffic Inj Prev ; 25(1): 36-40, 2024.
Article in English | MEDLINE | ID: mdl-37815801

ABSTRACT

OBJECTIVE: Although second-generation antihistamines have reduced sedation-related side effects compared to first-generation antihistamines, sedation may still impair motor vehicle driving performance. Moreover, receiving/making phone calls using a hands-free function can negatively affect driving performance. Therefore, herein, driving performance was evaluated using a driving simulator to gain insights into the hazards of driving by combining second-generation antihistamines and a calling task, i.e., simulated calls using a hands-free function. METHODS: In this study, 20 subjects drove in a driving simulator in the absence or presence of a calling task while taking or not taking second-generation antihistamines. Driving performances for nonemergency and emergency events were determined, and a comparative analysis of intra-individual variability when taking and not taking second-generation antihistamines was conducted. RESULTS: First, when nonemergency and emergency were examined in the absence of a calling task, no significant difference in driving performance was observed between taking and not taking second-generation antihistamines. Next, when the nonemergency event was examined in the presence of a calling task, no significant difference in driving performance was observed between taking and not taking second-generation antihistamines. However, when the emergency event was examined in the presence of a calling task, a significant difference in driving performance was observed between taking and not taking second-generation antihistamines, thus resulting in reduced driving performance. CONCLUSIONS: The new system with added calling tasks allowed the extraction of the potential risks of driving performance of second-generation antihistamines that may have been previously overlooked. This study suggests that pharmacists and other healthcare professionals may need to instruct people taking any second-generation antihistamine to focus on driving and not on subtasks that require cognitive load such as talking while driving.


Subject(s)
Automobile Driving , Histamine H1 Antagonists, Non-Sedating , Humans , Histamine H1 Antagonists, Non-Sedating/adverse effects , Accidents, Traffic , Histamine Antagonists/adverse effects
4.
Geriatr Gerontol Int ; 23(12): 951-957, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37908183

ABSTRACT

AIM: Senescence-accelerated mouse prone (SAMP) mice can reproduce the same conditions as normal aging mice in a short period. Although SAMP mice have been widely used in aging research, research on skin function in SAMP mice is lacking. In this study, to investigate the skin function of SAMP mice, we analyzed the expression of genes important for maintaining skin function. METHODS: Eight-month-old SAMP mice and senescence-accelerated mouse resistant (SAMR) mice with normal aging were used. The expression levels of various functional genes in the skin were analyzed. RESULTS: The dermal water content of SAMP mice was significantly lower than that of SAMR mice, indicating dry skin. The mRNA expression levels of elastin (Ela), filaggrin (Flg), loricrin (Lor), collagen type I alpha 1 chain (Col1a1) and Col1a2 in the skin of SAMP mice were all significantly decreased compared with those of SAMR mice. Hyaluronan-degrading enzyme (Hyal1) expression levels in SAMP mice were similar to those in SAMR mice, but hyaluronan synthase (Has2) levels were significantly decreased. In addition, the expression level of aquaporin-3 in the skin of SAMP mice was significantly decreased at both the mRNA and protein levels. CONCLUSIONS: In the skin of SAMP mice, the expression levels of various skin function-regulating genes were decreased, and this phenomenon might cause skin dryness. The SAMP mouse could be a tool for analyzing skin aging. Geriatr Gerontol Int 2023; 23: 951-957.


Subject(s)
Aging , Collagen Type I , Mice , Animals , Aging/genetics , Collagen Type I/genetics , Disease Models, Animal , RNA, Messenger/genetics , RNA, Messenger/metabolism
5.
J Pharmacol Sci ; 152(3): 167-177, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37257944

ABSTRACT

Cisplatin, a platinum-based anticancer drug used frequently in cancer treatment, causes skeletal muscle atrophy. It was predicted that the proteolytic pathway is enhanced as the mechanism of this atrophy. Therefore, we investigated whether a platinum-based anticancer drug affects the expression of the major proteins of skeletal muscle, myosin heavy chain (MyHC). Mice were injected with cisplatin or oxaliplatin for four consecutive days. C2C12 myotubes were treated using cisplatin and oxaliplatin. Administration of platinum-based anticancer drug reduced quadriceps mass and muscle strength compared to the control group. Protein levels of all MyHC isoforms were reduced in the platinum-based anticancer drug groups. However, only Myh2 (MyHC-IIa) gene expression in skeletal muscle of mice treated with platinum-based anticancer drugs was found to be reduced. Treatment of C2C12 myotubes with platinum-based anticancer drugs reduced the protein levels of all MyHCs, and treatment with the proteasome inhibitor MG-132 restored this reduction. The expression of Mef2c, which was predicted to act upstream of Myh2, was reduced in the skeletal muscle of mice treated systemically with platinum-based anticancer drug. Degradation of skeletal muscle MyHCs by proteasomes may be a factor that plays an important role in muscle mass loss in platinum-based anticancer drug-induced muscle atrophy.


Subject(s)
Antineoplastic Agents , Myosin Heavy Chains , Mice , Animals , Myosin Heavy Chains/genetics , Myosin Heavy Chains/metabolism , Down-Regulation , Cisplatin , Platinum/metabolism , Oxaliplatin , Muscle, Skeletal/metabolism , Muscle Fibers, Skeletal/metabolism , Antineoplastic Agents/pharmacology , Protein Isoforms/genetics , Protein Isoforms/metabolism , Atrophy/metabolism
6.
Sci Rep ; 13(1): 6537, 2023 04 21.
Article in English | MEDLINE | ID: mdl-37085597

ABSTRACT

Irinotecan (CPT-11) is an anticancer drug with indications for use in treating various cancers, but severe diarrhea develops as a side effect. We investigated the effects of green tea extract (GTE) on CPT-11-induced diarrhea, focusing on ß-glucuronidase and intestinal UGT1A1. When CPT-11 was administered to rats alone, the fecal water content was approximately 3.5-fold higher in this group than in the control group, and diarrhea developed. The fecal water content in the GTE-treated group was significantly higher than that in the control group, but the difference was smaller than that between the group treated with CPT-11 alone and the control group, and diarrhea improved. When CPT-11 was administered alone, the abundances of Bacteroides fragilis and Escherichia coli, which are ß-glucuronidase-producing bacteria, increased and interleukin-6 and interleukin-1ß mRNA levels in the colon increased, but GTE suppressed these increases. CPT-11 decreased colon UGT1A1 and short-chain fatty acid levels; however, this decrease was suppressed in the GTE-treated group. The findings that GTE decreases the abundance of ß-glucuronidase-producing bacteria and increases colon UGT1A1 levels, thereby decreasing the production of the active metabolite SN-38 in the intestinal tract, indicate that GTE ameliorates CPT-11-induced diarrhea.


Subject(s)
Antineoplastic Agents, Phytogenic , Gastrointestinal Microbiome , Rats , Animals , Irinotecan/adverse effects , Camptothecin , Antineoplastic Agents, Phytogenic/therapeutic use , Diarrhea/chemically induced , Diarrhea/drug therapy , Diarrhea/prevention & control , Bacteria/metabolism , Antioxidants/therapeutic use , Glucuronidase/genetics , Glucuronidase/metabolism , Tea/adverse effects
7.
J Nat Med ; 77(2): 306-314, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36635416

ABSTRACT

The genus Claviceps (Clavicipitaceae) is famous for producing ergot alkaloids (EAs) in sclerotia. EAs can cause ergotism, resulting in convulsions and necrosis when ingested, making these compounds a serious concern for food safety. Agroclavine (2), a typical Clavine-type EA, is a causative agent of ergotism and is listed as a compound to be monitored by the European Food Safety Authority. Clavine-type EAs are known to cause cytotoxicity, but the mechanism has not been elucidated. We performed annexin V and PI double-staining followed by flow cytometric analysis to detect apoptosis in HepG2 and PANC-1 cells after exposure to Clavine-type EAs. Clavine-type EAs reduced cell viability and induced apoptosis in both cell lines. We then performed LC-MS analysis of EAs from 41 sclerotia samples of Claviceps collected in Japan. 24 out of 41 sclerotia extracts include peptide-type EAs (ergosine/inine: 4/4', ergotamine: 5, ergocornine/inine: 6/6', α-ergocryptine/inine: 8/8', and ergocristine/inine: 9/9') and 19 sclerotia extracts among 24 sclerotia detected peptide type EAs include Clavine-type EAs (pyroclavine: 1, agroclavine: 2, festuclavine: 3) by LC-MS. We then performed a metabolomic analysis of the EAs in the sclerotia using principal component analysis (PCA). The PCA score plots calculated for EAs suggested the existence of four groups with different EA production patterns. One of the groups was formed by the contribution of Clavine-type EAs. These results suggest that Clavine-type EAs are a family of compounds requiring attention in food safety and livestock production in Japan.


Subject(s)
Claviceps , Ergot Alkaloids , Ergotism , Humans , Ergot Alkaloids/analysis , Ergot Alkaloids/chemistry , Japan , Claviceps/chemistry , Claviceps/metabolism , Peptides , Apoptosis
8.
Mol Biol Rep ; 49(11): 10175-10181, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36030474

ABSTRACT

BACKGROUND: Chimpi, the dried peel of Citrus unshiu or Citrus reticulata, has various pharmacological effects. Chimpi extract was recently shown to affect the skin, including its inhibitory effect against atopic dermatitis. In this study, we analyzed the effects of Chimpi extract on the functional molecule aquaporin-3 (AQP3), which is involved in water transport and cell migration in the skin. METHODS AND RESULTS: Chimpi extract was added to HaCaT human skin keratinocytes, and the AQP3 expression level was analyzed. A wound healing assay was performed to evaluate the effect of Chimpi extract on cell migration. The components of Chimpi extract and fractions obtained by liquid-liquid distribution studies were added to HaCaT cells, and AQP3 expression was analyzed. Chimpi extract significantly increased AQP3 expression in HaCaT cells at both the mRNA and protein levels. Immunocytochemical staining revealed that Chimpi extract also promoted the transfer of AQP3 to the cell membrane. Furthermore, Chimpi extract enhanced cell migration. Hesperidin, narirutin, and nobiletin did not increase AQP3 levels. Although the components contained in the fractions obtained from the chloroform, butanol, and water layer increased AQP3, the active components could not be identified. CONCLUSIONS: These results reveal that Chimpi extract may increase AQP3 levels in keratinocytes and increase the dermal water content. Therefore, Chimpi extract may be effective for the management of dry skin.


Subject(s)
Aquaporin 3 , Citrus , Humans , Aquaporin 3/genetics , Aquaporin 3/metabolism , Cells, Cultured , Keratinocytes/metabolism , Water/metabolism , Plant Extracts/pharmacology , Plant Extracts/metabolism
9.
Biochem Pharmacol ; 204: 115234, 2022 10.
Article in English | MEDLINE | ID: mdl-36041542

ABSTRACT

Patients with cancer often experience muscle atrophy, which worsens their prognosis. Decreased muscle regenerative capacity plays an important role in the complex processes involved in muscle atrophy. Administration of cisplatin, a cancer chemotherapeutic agent, has been implicated as a cause of muscle atrophy. In this study, we examined whether cisplatin affects the differentiation of myoblasts into myotubes. We treated C2C12 myoblasts with a differentiation medium containing cisplatin and its vehicle during for 8 days and observed the changes in the expression of myosin heavy chain (MyHC) and myogenin in the myoblasts. Cisplatin was injected in mice for 4 consecutive days; on Day 5, the mice quadriceps muscles were sampled and examined. The expression of MyHCs increased and that of myogenin decreased after cisplatin treatment. The secretion of acidic cysteine-rich proteins (e.g., Sparc proteins) reportedly promotes C2C12 myoblast differentiation. Therefore, we investigated the Sparc family gene expression during myogenesis in C2C12 myoblasts after cisplatin treatment. Of all the genes investigated, Sparc-like protein 1 (Sparcl1) expression was significantly suppressed by cisplatin on Days 4-8. Simultaneous treatment with recombinant mouse Sparcl1 almost inhibited the cisplatin-induced suppression of total MyHC and myogenin protein levels. Moreover, Sparcl1 expression decreased in the skeletal muscles of mice, leading to cisplatin-induced muscle atrophy. Our results suggest that cisplatin-induced myogenesis suppression causes muscle atrophy and inhibits the expression of Sparcl1, which promotes C2C12 cell differentiation during myogenesis.


Subject(s)
Calcium-Binding Proteins , Cisplatin , Extracellular Matrix Proteins , Myosin Heavy Chains , Animals , Cell Differentiation/physiology , Cell Line , Cisplatin/pharmacology , Cysteine/metabolism , Down-Regulation , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/metabolism , Mice , Muscle Development , Muscle Fibers, Skeletal/metabolism , Muscular Atrophy/metabolism , Myoblasts/metabolism , Myogenin/genetics , Myogenin/metabolism , Myosin Heavy Chains/genetics , Myosin Heavy Chains/metabolism
10.
Biol Pharm Bull ; 45(7): 910-918, 2022.
Article in English | MEDLINE | ID: mdl-35786599

ABSTRACT

Cisplatin is a chemotherapy drug used to treat a variety of cancers. Muscle loss in cancer patients is associated with increased cancer-related mortality. Previously, we suggested that cisplatin administration increases the atrophic gene expressions of ubiquitin E3 ligases, such as atrogin-1 and muscle RING finger-1 (MuRF1), which may lead to muscle atrophy. In this study, C57BL/6J mice were treated with cisplatin (3 mg/kg, intraperitoneally) or saline for 4 consecutive days. Twenty-four hours after the final injection of cisplatin, quadriceps muscles were removed from the mice. The gene expression of Psma and Psmb, which comprise the 20S proteasome, was upregulated by cisplatin administration in the quadriceps muscle of mouse. Systemic administration of cisplatin significantly reduced not only the quadriceps muscle mass but also the diameter of the myofibers. In addition, bortezomib (0.125 mg/kg, intraperitoneally) was administered 30 min before each cisplatin treatment. The co-administration of bortezomib, a proteasome inhibitor, significantly recovered the reductions in the mass of quadriceps and myofiber diameter, although it did not recover the decline in the forelimb and forepaw strength induced by cisplatin. Increased 20S proteasome abundance may play a significant role in the development of cisplatin-induced muscle atrophy. During cisplatin-induced skeletal muscle atrophy, different mechanisms may be involved between loss of muscle mass and strength. In addition, it is suggested that bortezomib has essentially no effect on cisplatin-induced muscle atrophy.


Subject(s)
Cisplatin , Proteasome Endopeptidase Complex , Animals , Bortezomib , Mice , Mice, Inbred C57BL , Muscular Atrophy/chemically induced , Muscular Atrophy/drug therapy
11.
Biol Pharm Bull ; 45(8): 1208-1212, 2022.
Article in English | MEDLINE | ID: mdl-35908904

ABSTRACT

We have previously reported that swellings caused by haptens, such as 2,4,6-trinitrochlorobenzene (TNCB), may be associated with the extracellular signal-regulated kinase (ERK)-induced proliferation pathway. However, the involvement of the Spred/Sprouty family as critical negative regulators of the Ras/Raf/ERK signaling pathway at disease sites is not well-established. Thus, in the present study, the effects of hapten-challenge on the expression levels of genes and proteins associated with the Spred/Sprouty family in the ear of mice were investigated. The activation of ERK and epidermal growth factor receptor (EGFR) tyrosine kinase was inhibited by their selective inhibitors, namely, U0126 and PD168393, respectively. Twenty-four hours after the final challenge by the haptens TNCB, 2,4-dinitrofluorobenzene, or oxazolone, ear thickness was augmented by challenge with all haptens and the gene expression levels of Spred1, Spred2, Sprouty1, and Sprouty2 in swelling induced by all haptens were significantly decreased. Furthermore, Spred2, Sprouty1, and Sprouty2 genes were decreased in the epidermis and dermis of the TNCB-challenged ear. In conclusion, it is possible that the mechanism of hapten-challenge-induced skin thickening involves not only the enhancement of cell proliferative functions via the activation of ERK by EGFR tyrosine kinase activation but also the decreases expression of Spred/Sprouty family members.


Subject(s)
Dermatitis, Contact , Repressor Proteins , Animals , ErbB Receptors/genetics , Extracellular Signal-Regulated MAP Kinases/metabolism , Mice , Picryl Chloride , Protein-Tyrosine Kinases , Repressor Proteins/metabolism
12.
Mycoscience ; 62(3): 166-175, 2021.
Article in English | MEDLINE | ID: mdl-37091325

ABSTRACT

The genus Aciculosporium (Clavicipitaceae, Hypocreales, Ascomycota)was established in 1908 for A. take , which is the causal fungus of witches' broom of bamboo. Although the original description was valid at that time, a type specimen for A. take has not been designated. To standardize the use of this genus and species name, a neotypification and reference specimen of A. take are proposed. Multilocus phylogenetic analyses based on DNA sequences from 28S rDNA, TEF, Tub2, Mcm7, and RPB2 revealed that A.sasicola is from a different lineage to A. take, and other specimens from wavyleaf basket grass (Oplismenus undulatifolius) represent a distinct species proposed here as Aciculosporium oplismeni sp. nov. Chemical analysis using mass spectrometry and nuclear magnetic resonance spectroscopy showed that A. take produces four proline-containing cyclic dipeptides, which are moieties of ergot alkaloids. However, ergot alkaloids, lolines, peramine, indole-diterpenes, and lolitrem were not detected in the culture solvent. This study offers clarification of the lineage and morphology of this genus.

13.
Chem Pharm Bull (Tokyo) ; 68(9): 848-854, 2020.
Article in English | MEDLINE | ID: mdl-32879225

ABSTRACT

The degradation behavior of eight tricyclic antidepressants (TCAs; amitriptyline, amoxapine (AMX), imipramine, clomipramine, desipramine, doxepin, dothiepin, and nortriptyline) in artificial gastric juice was investigated to estimate their pharmacokinetics in the stomach. As a result, among the eight TCAs, only AMX was degraded in artificial gastric juice. The degradation was a pseudo first-order reaction; activation energy (Ea) was 88.70 kJ/mol and activation entropy (ΔS) was -80.73 J/K·mol. On the other hand, the recovery experiment revealed that the degradation product did not revert to AMX and accordingly, this reaction was considered to be irreversible. In the AMX degradation experiment, peaks considered to be degradation products A (I) and B (II) were detected at retention times of around 3 min and 30 min in LC/UV measurements, respectively. Structural analysis revealed that compound (I) was [2-(2-aminophenoxy)-5-chlorophenyl]-piperazin-1-yl-methanone, a new compound, and compound (II) was 2-chlorodibenzo[b,f][1,4]oxazepin-11(10H)-one. As for the degradation behavior, it was estimated that AMX was degraded into (II) via (I), i.e., (II) was the final product. The results are expected to be useful in clinical chemistry and forensic science, including the estimation of drugs to be used at the time of judicial dissection and suspected drug addiction.


Subject(s)
Amoxapine/chemistry , Antidepressive Agents, Tricyclic/chemistry , Gastric Juice/chemistry , Amoxapine/pharmacokinetics , Antidepressive Agents, Tricyclic/pharmacokinetics , Chromatography, Liquid , Humans , Mass Spectrometry , Molecular Structure
14.
Biosci Biotechnol Biochem ; 84(6): 1274-1284, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32013749

ABSTRACT

Berberine (BBR) is a protoberberine alkaloid extracted from plants such as Coptis japonica (Ranunculaceae). In a previous report, we demonstrated the existence of a 11-hydroxylation pathway employed by BBR-utilizing bacteria for metabolism of BBR. In the present study, we report the identification of the genes brhA, brhB, and brhC as encoding a multicomponent BBR 11-hydroxylase in Burkholderia sp. strain CJ1. BrhA is belonging to the Rieske non-heme iron oxygenase (RO) family, a class of enzymes known to catalyze the first step in bacterial aromatic-ring hydroxylation. We further demonstrate that BrhA activity requires BrhB (ferredoxin reductase) and BrhC (ferredoxin) as electron transport chain components. A BLAST search revealed that BrhA exhibits 38% and 33% sequence identity to dicamba O-demethylase (DdmC; AY786443) and chloroacetanilide herbicides N-dealkylase (CndA; KJ461679), respectively. To our knowledge, this work represents the first report of a bacterial oxygenase catalyzing the metabolism of a polycyclic aromatic-ring alkaloid.Abbreviations: BBR: berberine; D-BBR: demethyleneberberine; H-BBR: 11-hydroxyberberine; HD-BBR: 11-hydroxydemethyleneberberine; HDBA: 2-hydroxy-3,4-dimethoxybenzeneacetic acid; PAL: palmatine; H-PAL: 11-hydroxypalmatine; BRU: berberrubine; Fd: ferredoxin; FdR: ferredoxin reductase; ETC: electron transport chain.


Subject(s)
Berberine/metabolism , Burkholderia/enzymology , Burkholderia/genetics , Mixed Function Oxygenases/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Berberine/analogs & derivatives , Berberine Alkaloids/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Ferredoxins/genetics , Ferredoxins/metabolism , Genome, Bacterial , Hydroxylation , Microorganisms, Genetically-Modified , Mixed Function Oxygenases/metabolism , Oxidoreductases/genetics , Oxidoreductases/metabolism , Phylogeny , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
15.
Biosci Biotechnol Biochem ; 84(6): 1299-1302, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31985355

ABSTRACT

Burkholderia sp. strain CJ1 was newly isolated as berberine (BBR) degrading bacteria from rhizosphere of Coptis japonica. CJ1 had the ability to utilize BBR as the sole carbon source and revealed that BBR metabolism via 11-hydroxylation and demethylenation pathway. It was also revealed that the 11-hydroxylation ability of BBR and palmatine (PAL) has induced by BBR.


Subject(s)
Berberine/metabolism , Burkholderia/metabolism , Coptis/metabolism , Coptis/microbiology , Rhizosphere , Berberine Alkaloids/metabolism , Biodegradation, Environmental , Hydroxylation , Soil Microbiology
16.
J Antibiot (Tokyo) ; 72(2): 71-78, 2019 02.
Article in English | MEDLINE | ID: mdl-30410008

ABSTRACT

Coptidis rhizome (CR) is a widely used herbal medicine that contains protoberberine-type alkaloids. CR extract exhibits various pharmacologic activities. A previous study reported the isolation of Rhodococcus sp. strain BD7100 as a berberine (BBR)-utilizing bacterium, and the BBR-degradation pathway has been investigated. When we incubated strain BD7100 cells with CR extract, the number of viable cells declined with the degradation of components in the CR extract, and the culture broth exhibited antibacterial activity against strain BD7100. These results suggest that CR extract cultured in the presence of strain BD7100 contains one or more antibacterial agents. In this study, we isolated coptirhoquinone A (1) from CR extract incubated with strain BD7100 in Luria-Bertani (LB) medium, and the structure was elucidated using NMR and MS analysis. We also report the total synthesis and antimicrobial activities of 1 against bacteria, fungi, and Pythium sp.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drugs, Chinese Herbal/pharmacology , Rhodococcus/growth & development , Rhodococcus/metabolism , Anti-Bacterial Agents/chemistry , Antifungal Agents/pharmacology , Antiprotozoal Agents/pharmacology , Berberine/metabolism , Coptis chinensis , Drugs, Chinese Herbal/chemistry , Fungi/drug effects , Plant Extracts/chemistry , Plant Extracts/pharmacology , Pythium/drug effects , Quinones/chemistry , Quinones/isolation & purification , Quinones/pharmacology , Rhodococcus/drug effects
17.
J Nat Med ; 72(1): 332-334, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29063363

ABSTRACT

A new cinnamoylphenethylamine derivative, compound 1, was isolated as the main HPLC peak after partitioning the methanol extract of bulbs of a Mongolian onion species, Allium carolinianum DC. The chemical structure of this substance was determined by spectroscopic analysis including MS, and 1D and 2D NMR. Compound 1 showed weak cytotoxic activity in the murine leukemia cell line P388.


Subject(s)
Allium/chemistry , Phenethylamines/isolation & purification , Plant Extracts/isolation & purification , Chromatography, High Pressure Liquid , Magnetic Resonance Spectroscopy , Mongolia , Phenethylamines/chemistry , Plant Extracts/chemistry , Plant Roots/chemistry
18.
J Nat Med ; 72(1): 357-363, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29188416

ABSTRACT

This research examined the production of fungal metabolites as a biological response to Kampo medicines. Shimbu-to (SMB) is a Kampo medicine composed of five herbal components: peony root (Shakuyaku), ginger (Shokyo), processed aconite root (Bushi), Poria sclerotium (Bukuryo), and Atractylodes lancea rhizomes (Sojutsu). High-performance liquid chromatography (HPLC) analysis of the fungus Aspergillus nidulans CBS 112.46 incubated in potato dextrose broth supplemented with SMB extract revealed emericellin (2) as the major peak and new xanthone analogues 24-hydroxyshamixanthone (1), shamixanthone (3), epishamixanthone (4), pre-shamixanthone (5), and variecoxanthone A (6) as minor peaks. The structure of 1 was determined by detailed analysis of 1D-NMR, 2D-NMR, and MS data. The results suggest that SMB extract regulates the biosynthesis of emericellin and its analogues in A. nidulans. Further investigations revealed that glucose induces the biosynthesis of emericellin and its analogues in A. nidulans in a concentration-dependent manner.


Subject(s)
Aspergillus nidulans/metabolism , Drugs, Chinese Herbal/pharmacology , Xanthones/metabolism , Aspergillus nidulans/drug effects , Chromatography, High Pressure Liquid , Medicine, Kampo , Molecular Conformation , Xanthones/chemistry , Xanthones/isolation & purification
19.
Sci Rep ; 7(1): 7422, 2017 08 07.
Article in English | MEDLINE | ID: mdl-28784988

ABSTRACT

Plants produce many specific secondary metabolites as a response to environmental stress, especially biological stress. These compounds show strong biological activities and high stability against degradation by microbes and animals. Berberine, a benzylisoquinoline alkaloid, is found in many plant species and has strong antimicrobial activity, and is often included in traditional herbal medicines. We previously investigated how berberine is degraded in nature and we isolated two berberine-utilizing bacteria. In this study, we characterized the gene encoding the enzyme that degrades the 2,3-methylenedioxy ring of berberine; this ring is important for its activity and stability. Further characterization of several other berberine-utilizing bacteria and the genes encoding key demethylenation enzymes revealed that these enzymes are tetrahydrofolate dependent and similar to demethylation enzymes such as GcvT. Because the degradation of O-methyl groups or the methylenedioxy ring in phenolic compounds such as lignin, lignan and many other natural products, including berberine, is the key step for the catabolism of these compounds, our discovery reveals the common origin of the catabolism of these stable chemicals in bacteria.


Subject(s)
Bacteria/metabolism , Bacterial Proteins/metabolism , Berberine/metabolism , Demethylation , Enzymes/metabolism , Bacteria/genetics , Bacterial Proteins/genetics , Biotransformation , Enzymes/genetics
20.
J Nat Prod ; 79(9): 2167-74, 2016 09 23.
Article in English | MEDLINE | ID: mdl-27626956

ABSTRACT

Seven novel spiromeroterpenoids, asnovolins A-G (1-7), one of which was shown to suppress fibronectin expression, were isolated from Aspergillus novofumigatus CBS117520 along with a known compound, novofumigatonin (8). The structures of asnovolins A-G were elucidated using MS and 2D-NMR data. Asnovolin E (5) suppressed fibronectin expression by normal human neonatal dermal fibroblast cells.


Subject(s)
Spiro Compounds/isolation & purification , Spiro Compounds/pharmacology , Terpenes/isolation & purification , Terpenes/pharmacology , Aspergillus/chemistry , Drug Screening Assays, Antitumor , Fibronectins , Humans , Molecular Structure , Nuclear Magnetic Resonance, Biomolecular , Spiro Compounds/chemistry , Terpenes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...