Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell ; 79(5): 836-845.e7, 2020 09 03.
Article in English | MEDLINE | ID: mdl-32649884

ABSTRACT

The inactive X chromosome (Xi) is inherently susceptible to genomic aberrations. Replication stress (RS) has been proposed as an underlying cause, but the mechanisms that protect from Xi instability remain unknown. Here, we show that macroH2A1.2, an RS-protective histone variant enriched on the Xi, is required for Xi integrity and female survival. Mechanistically, macroH2A1.2 counteracts its structurally distinct and equally Xi-enriched alternative splice variant, macroH2A1.1. Comparative proteomics identified a role for macroH2A1.1 in alternative end joining (alt-EJ), which accounts for Xi anaphase defects in the absence of macroH2A1.2. Genomic instability was rescued by simultaneous depletion of macroH2A1.1 or alt-EJ factors, and mice deficient for both macroH2A1 variants harbor no overt female defects. Notably, macroH2A1 splice variant imbalance affected alt-EJ capacity also in tumor cells. Together, these findings identify macroH2A1 splicing as a modulator of genome maintenance that ensures Xi integrity and may, more broadly, predict DNA repair outcome in malignant cells.


Subject(s)
Alternative Splicing , DNA Repair , Epigenesis, Genetic , Genomic Instability , Histones/physiology , Anaphase , Animals , Cell Line , Chromosomal Instability , Chromosomes, Human, X , Female , Histones/genetics , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout
2.
Mol Cell ; 69(1): 36-47.e7, 2018 01 04.
Article in English | MEDLINE | ID: mdl-29249653

ABSTRACT

Recent integrative epigenome analyses highlight the importance of functionally distinct chromatin states for accurate cell function. How these states are established and maintained is a matter of intense investigation. Here, we present evidence for DNA damage as an unexpected means to shape a protective chromatin environment at regions of recurrent replication stress (RS). Upon aberrant fork stalling, DNA damage signaling and concomitant H2AX phosphorylation coordinate the FACT-dependent deposition of macroH2A1.2, a histone variant that promotes DNA repair by homologous recombination (HR). MacroH2A1.2, in turn, facilitates the accumulation of the tumor suppressor and HR effector BRCA1 at replication forks to protect from RS-induced DNA damage. Consequently, replicating primary cells steadily accrue macroH2A1.2 at fragile regions, whereas macroH2A1.2 loss in these cells triggers DNA damage signaling-dependent senescence, a hallmark of RS. Altogether, our findings demonstrate that recurrent DNA damage contributes to the chromatin landscape to ensure the epigenomic integrity of dividing cells.


Subject(s)
Carcinogenesis/genetics , Chromatin/genetics , DNA Damage/genetics , DNA Repair/genetics , DNA Replication/genetics , Histones/genetics , Homologous Recombination/genetics , BRCA1 Protein/metabolism , Cell Division/genetics , Cells, Cultured , Cellular Senescence/genetics , Genomic Instability/physiology , Humans , Signal Transduction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...