Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomaterials ; 303: 122381, 2023 12.
Article in English | MEDLINE | ID: mdl-37935073

ABSTRACT

Allergen immunotherapy (AIT) is the only curative treatment for allergic diseases. However, AIT has many disadvantages related to efficiency, safety, long-term duration, and patient compliance. Dendritic cells (DCs) have an important role in antigen-specific tolerance induction; thus, DC-targeting strategies to treat allergies such as glutaraldehyde crosslinked antigen to mannoprotein (MAN) have been established. However, glutaraldehyde crosslinking may reduce the antigen presentation efficiency of DCs. To overcome this, we developed a MAN-coated ovalbumin (OVA) nanoparticle (MDO), which uses intermolecular disulfide bond to crosslink OVA and MAN. MDO effectively targeted DCs resulting in tolerogenic DCs, and promoted higher antigen presentation efficiency by DCs compared with OVA or glutaraldehyde crosslinked nanoparticles. In vitro and in vivo experiments showed that DCs exposed to MDO induced Treg cells. Moreover, MDO had low reactivity with anti-OVA antibodies and did not induce anaphylaxis in allergic mice, demonstrating its high safety profile. In a mouse model of allergic asthma, MDO had significant preventative and therapeutic effects when administered orally or subcutaneously. Therefore, MDO represents a promising new approach for the efficient and safe treatment of allergies.


Subject(s)
Hypersensitivity , Nanoparticles , Humans , Mice , Animals , Mannans , Glutaral , Dendritic Cells , Allergens , Desensitization, Immunologic , Nanoparticles/chemistry , Ovalbumin , Immunotherapy/methods
2.
Biol Pharm Bull ; 45(7): 847-850, 2022.
Article in English | MEDLINE | ID: mdl-35786592

ABSTRACT

For the treatment of autoimmune diseases, depletion of B cells specific for auto-antigens is important because they will be a source of plasmablasts/plasma cells to produce autoantibodies. However, because some types of B cells like naïve B cells and memory B cells are at quiescent phase, they are insensitive to anticancer drugs which exert cytotoxicity by arresting the cell cycle. Here we show that B cell receptor (BCR) stimulation increases the sensitivity of anticancer drugs by promoting the proliferation of quiescent B cells. The BCR stimulation to primary naïve B cells enhanced sensitivity to several anticancer drugs which arrest the cell cycle through different mechanisms. The present results indicated that combination of the BCR stimulation and anticancer drugs is a promising strategy for the antigen-specific depletion of pathogenic quiescent B cells.


Subject(s)
Antineoplastic Agents , Receptors, Antigen, B-Cell , Antineoplastic Agents/pharmacology , Cell Cycle , Cell Cycle Checkpoints , Cell Division
SELECTION OF CITATIONS
SEARCH DETAIL
...