Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters











Publication year range
1.
ACS Appl Mater Interfaces ; 16(8): 10427-10438, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38375854

ABSTRACT

Capture and real-time recording of precise body movements using strain sensors provide personal information for healthcare monitoring and management. To acquire this information, a sensor that conforms to curved irregular surfaces, including biological tissue, is desired to record complex body movements while acting like a second skin to avoid interference with the movements. In this study, we developed a thin-film-type capacitive strain sensor that is flexible and stretchable on the surface of a living body. We fabricated conductive polymeric ultrathin films ("nanosheets") comprising polystyrene-block-polybutadiene (SB) elastomers and single-walled carbon nanotubes (SWCNTs) (i.e., SWCNT-SB nanosheets) via gravure coating; the SWCNT-SB-coated nanosheets were used as the flexible electrode in a capacitive strain sensor. The dielectric (DE) layer was then prepared using the silicone elastomer Ecoflex 00-30 because its Young's modulus is comparable to that of the epidermis. The normalized capacitance changes (ΔC/C0) in the sensor increased with increasing tensile strain over a range from 0-100%, indicating that the proposed sensor can measure the strain of biological movements, including those of skin and blood vessels. To improve sensor conformability further, the effect of sensor thickness on the gauge factor (GF) was investigated using thinner DE layers by focusing on their flexural rigidity. As a result, the GF increased from 0.64 to 1.13 as the DE layer thickness decreased from 260 to 40 µm. Finally, we evaluated the fabricated sensor's signal stability and mechanical durability, including during wireless sensing when applied to human skin and a vascular model. The ΔC/C0 values varied in response to the bending motion of a finger, dilation of a blood vessel, and the swallowing movement of the throat. These results indicate that our capacitive strain sensor is conformable and functional on biological tissue to enable monitoring of dynamic biological movements (e.g., pulse rate and arterial dilation) without wearer discomfort.


Subject(s)
Nanotubes, Carbon , Wearable Electronic Devices , Humans , Nanotubes, Carbon/chemistry , Elastic Modulus , Movement , Motion
2.
Cyborg Bionic Syst ; 5: 0091, 2024.
Article in English | MEDLINE | ID: mdl-38318499

ABSTRACT

The conventional electrohydrodynamic (EHD) pump is limited to pumping functional and dielectric liquids, which restricts its applications in fields like microfluidics, food safety, and materials production. In this study, we present a flexible water pump driven by EHD fluid, achieved by integrating valveless elements into the fluidic channel. Our approach leverages the water-EHD interface to propel the immiscible aqueous liquid and reciprocate this process using the nozzle-diffuser system. All components of the water pump are digitally fabricated and assembled. The valveless parts are created using a laser cutting machine. Additionally, we develop a model for the EHD pump and nozzle-diffuser system to predict the generated flow rate, considering factors such as the asymmetrical performance of the EHD pump, pulse frequency, applied voltage, and structural parameters. Finally, we experimentally characterize the flow rates of both the EHD pump and water pump and apply the newly developed device to air bubble manipulation and droplet generation. This research broadens the range of specialized liquids pumped by EHD pumps to include other aqueous liquids or mixtures.

3.
ACS Appl Mater Interfaces ; 16(1): 1883-1891, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38096263

ABSTRACT

Seamlessly fusing fashion and functionality can redefine wearable technology and enhance the quality of life. We propose a pocketable and smart electrohydrodynamic pump (PSEP) with self-sensing capability for wearable thermal controls. Overcoming the constraints of traditional liquid-cooled wearables, PSEP with dimensions of 10 × 2 × 1.05 cm and a weight of 10 g is sufficiently compact to fit into a shirt pocket, providing stylish and unobtrusive thermal control. Silent operation coupled with the unique self-sensing ability to monitor the flow rate ensures system reliability without cumbersome additional components. The significant contribution of our study is the formulation and validation of a theoretical model for self-sensing in EHD pumps, thereby introducing an innovative functionality to EHD pump technology. PSEP can deliver temperature changes of up to 3 °C, considerably improving personal comfort. Additionally, the PSEP system features an intuitive, smartphone-compatible interface for seamless wireless control and monitoring, enhancing user interaction and convenience. Furthermore, the ability to detect and notify users of flow blockages, achieved by self-sensing, ensures an efficient and long-term operation. Through its blend of compact design, intelligent functionality, and stylish integration into daily wear, PSEP reshapes the landscape of wearable thermal control technology and offers a promising avenue for enhancing personal comfort in daily life.

4.
Front Robot AI ; 8: 773056, 2021.
Article in English | MEDLINE | ID: mdl-34859060

ABSTRACT

Soft robotics and wearable devices are promising technologies due to their flexibility. As human-soft robot interaction technologies advance, the interest in stretchable sensor devices has increased. Currently, the main challenge in developing stretchable sensors is preparing high-quality sensors via a simple and cost-effective method. This study introduces the do-it-yourself (DIY)-approach to fabricate a carbon nanotube (CNT) powder-based stretchable sensor. The fabrication strategy utilizes an automatic brushing machine to pattern CNT powder on the elastomer. The elastomer ingredients are optimized to increase the elastomer compatibility with the brushing method. We found that polydimethylsiloxane-polyethyleneimine (PDMS-PEIE) is 50% more stretchable and 63% stickier than previously reported PDMS 30-1. With these improved elastomer characteristics, PDMS-PEIE/multiwalled CNT (PDMS-PEIE/MWCNT-1) strain sensor can realize a gauge factor of 6.2-8.2 and a responsivity up to 25 ms. To enhance the compatibility of the powder-based stretchable sensor for a wearable device, the sensor is laminated using a thin Ecoflex membrane. Additionally, system integration of the stretchable sensors are demonstrated by embedding it into a cotton-glove and a microcontroller to control a virtual hand. This cost-effective DIY-approach are expected to greatly contribute to the development of wearable devices since the technology is simple, economical, and reliable.

5.
Foods ; 10(2)2021 Feb 03.
Article in English | MEDLINE | ID: mdl-33546385

ABSTRACT

Many methods based on acoustic vibration characteristics have been studied to indirectly assess fruit ripeness via fruit firmness. Among these, the frequency of the 0S2 vibration mode measured on the equator has been examined, but soft-flesh fruit do not show the 0S2 vibration mode. In this study, a Rayleigh wave is generated on a soft mango fruit using the impulse excitation force generated by a laser-induced plasma shock wave technique. Then, the flesh firmness of mangoes is assessed in a non-contact and non-destructive manner by observing the Rayleigh wave propagation velocity because it is correlated with the firmness (shear elasticity), density, and Poisson's ratio of an object. If the changes in the density and Poisson's ratio are small enough to be ignored during storage, then the Rayleigh wave propagation velocity is strongly correlated to fruit firmness. Here, we measure the Rayleigh wave propagation velocity and investigate the effect of storage time. Specifically, we investigate the changes in firmness caused by ripening. The Rayleigh wave propagation velocity on the equator of Kent mangoes tended to decrease by over 4% in 96 h. The Rayleigh wave measured on two different lines propagated independent distance and showed a different change rate of propagation velocity during 96-h storage. Furthermore, we consider the reliability of our method by investigating the interaction of a mango seed on the Rayleigh wave propagation velocity.

6.
Sci Rep ; 10(1): 12834, 2020 07 30.
Article in English | MEDLINE | ID: mdl-32732982

ABSTRACT

The previously reported gel and polymer actuators require external inputs, such as batteries, circuits, electronic circuits, etc., compared with autonomous motions produced by the living organisms. To realize the spontaneous motions, here, we propose to integrate a power supply, actuators, and control into a single-component self-oscillating hydrogel. We demonstrate self-actuating gel pumps driven by the oscillatory Belousov-Zhabotinsky (BZ) reaction without electronic components. We have developed the volume oscillation of gels synchronized with the BZ reaction (BZ gel). Since the self-actuating gel pumps are driven by chemo-mechanical energy from BZ gels, the self-actuating gel pumps don't require complex wiring designs, energy supply, and assembling. The mechanical work generated by BZ gels is extremely small. We formulated the thermodynamic cycle of BZ gels and maximized mechanical work. We found that pre-stretched BZ gel shows larger mechanical works. We physically separated the BZ gels and working fluid to create practical pumps. By using optimizing mechanical generated by BZ gels, we demonstrated the self-actuating gel pumps that transfer mechanical work through a stretchable elastomer membrane.

7.
Front Robot AI ; 6: 1, 2019.
Article in English | MEDLINE | ID: mdl-33501018

ABSTRACT

Soft robots with dynamic motion could be used in a variety of applications involving the handling of fragile materials. Rotational motors are often used as actuators to provide functions for robots (e.g., vibration, locomotion, and suction). To broaden the applications of soft robots, it will be necessary to develop a rotational motor that does not prevent robots from undergoing deformation. In this study, we developed a deformable motor based on dielectric elastomer actuators (DEAs) that is lightweight, consumes little energy, and does not generate a magnetic field. We tested the new motor in two experiments. First, we showed that internal stress changes in the DEAs were transmitted to the mechanism that rotates the motor. Second, we demonstrated that the deformable motor rotated even when it was deformed by an external force. In particular, the rotational performance did not decrease when an external force was applied to deform the motor into an elliptical shape. Our motor opens the door to applications of rotational motion to soft robots.

8.
Phys Rev E ; 93(1): 010501, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26871011

ABSTRACT

A self-oscillating gel is a system that generates an autonomous volume oscillation. This oscillation is powered by the chemical energy of the Belousov-Zhabotinsky (BZ) reaction, which demonstrates metal ion redox oscillation. A self-oscillating gel is composed of Poly-N-isopropylacrylamide (PNIPAAm) with a metal ion. In this study, we found that the displacement of the volume oscillation in a self-oscillating gel could be controlled by its being subjected to a prestraining process. We also revealed the driving mechanism of the self-oscillating gel from the point of view of thermodynamics. We observed that the polymer-solvent interaction parameter χ is altered by the redox changes to the metal ion incorporated in the self-oscillating gel. The prestraining process leads to changes in χ and changes in enthalpy and entropy when the self-oscillating gel is in a reduced and oxidized state. We found that nonprestrained gel samples oscillate in a poor solution (χ>0.5) and prestrained gel samples oscillate in a good solution (χ<0.5).


Subject(s)
Acrylic Resins/chemistry , Gels/chemistry , Ions/chemistry , Metals/chemistry , Models, Chemical , Motion , Osmotic Pressure , Oxidation-Reduction , Periodicity , Solvents/chemistry , Thermodynamics , Water/chemistry
9.
J Acoust Soc Am ; 138(4): EL424-8, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26520355

ABSTRACT

Although indoor acoustic characteristics should ideally be assessed by measuring the reverberation time using a point sound source, a regular polyhedron loudspeaker, which has multiple loudspeakers on a chassis, is typically used. However, such a configuration is not a point sound source if the size of the loudspeaker is large relative to the target sound field. This study investigates a small lightweight loudspeaker using a dielectric elastomer actuator vibrating in the breathing mode (the pulsating mode such as the expansion and contraction of a balloon). Acoustic testing with regard to repeatability, sound pressure, vibration mode profiles, and acoustic radiation patterns indicate that dielectric elastomer loudspeakers may be feasible.


Subject(s)
Acoustics/instrumentation , Amplifiers, Electronic , Dimethylpolysiloxanes , Transducers , Acrylic Resins , Electric Conductivity , Equipment Design , Silicone Elastomers , Soot , Vibration
10.
Ind Health ; 46(6): 629-34, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19088416

ABSTRACT

Prolonged exposure to hand-arm vibration (HAV) due to use of hand-held power tools leads to an increased occurrence of symptoms of disorders in the vascular, neurological, and osteo-articular systems of the upper limbs called hand-arm vibration syndrome (HAVS). Biodynamic responses of the hand-arm system to vibration can be suggestive parameters that give us better assessment of exposure to HAV and fundamental data for design of low-vibration-exposure power tools. Recently, a single axis hand-arm vibration system has been installed in the Japan National Institute of Occupational Safety and Health (NIOSH). The aims of this study were to obtain the fundamental dynamic characteristics of an instrumented handle and to validate the performance and measurement accuracy of the system applied to dynamic response measurement. A pseudo-random vibration signal with a frequency range of 5-1,250 Hz and a power spectrum density of 1.0 (m/s2)2/Hz was used in this study. First the dynamic response of the instrumented handle without any weight was measured. After this measurement, the dynamic response measurement of the handle with weights mounted on the handle was performed. The apparent mass of a weight itself was obtained by using the mass cancellation method. The mass of the measuring cap on the instrumented handle was well compensated by using the mass cancellation method. Based on the 10% error tolerance, this handle can reliably measure the dynamic response represented by an apparent mass with a minimum weight of 2.0 g in a frequency range of 10.0 to 1,000 Hz. A marked increase in the AM magnitude of the weights of 15 g and 20 g in frequency ranges greater than 800 Hz is attributed not to the fundamental resonance frequency of the handle with weights, but to the fixation of the weight to the measuring cap. In this aspect, the peak of the AM magnitude can be reduced and hence should not be an obstacle to the biodynamic response measurement of the human hand-arm system. On the basis of the results obtained in this study, we conclude that this hand-arm vibration test system can be used to measure biodynamic response parameters of the human hand-arm system.


Subject(s)
Occupational Exposure , Upper Extremity , Vibration , Equipment Design , Humans , Japan , Vibration/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL