Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Neuroinflammation ; 14(1): 69, 2017 03 29.
Article in English | MEDLINE | ID: mdl-28356120

ABSTRACT

BACKGROUND: Upregulated levels of 18-kDa translocator proteins (TSPO) and type 2 endocannabinoid receptors (CB2) are considered to reflect different aspects of microglia-related neuroinflammatory responses in the brain. Relative to the increase in the TSPO expression that occurs slightly later during neuroinflammation in a proinflammatory fashion, CB2 activation is considered to relate to the neuroprotective responses that occurs predominantly at an early stage of brain disorders. These findings, however, were deduced from studies with different animal samples under different experimental settings. Here, we aimed to examined the differences in TSPO binding and CB2 availability at an early stage of stroke in the same animal using positron emission tomography (PET). METHODS: We used a total of eight Sprague-Dawley rats that underwent photothrombotic stroke surgery. The binding levels of a TSPO tracer [11C](R)PK11195 and a CB2 tracer [11C]NE40 were measured at 24 h after the surgery in the same animal using PET in combination with immunohistochemistry for CB2 and several other markers. A morphological inspection was also performed with X-ray computed tomography for small animals. RESULTS: The levels of [11C]NE40 binding potential (BPND) were significantly higher in the cerebral cortical region on the lesion side than those on the non-lesion side, whereas no difference was found in the levels of [11C](R)PK11195 BPND between hemispheres. The tracer influx index (R1) data were all reduced on the lesion side irrespective of tracers. This increase in [11C]NE40 BPND was concomitant with an elevation in CB2 expression mainly within the microglia in the peri-infarct area, as shown by immunohistochemical examinations with Iba-1, CD11b/c+, and NG2+ staining. CONCLUSIONS: The present results provide in vivo evidence of different responses of microglia occurring in the acute state of stroke. The use of the CB2 tracer [11C]NE40 allows us to evaluate the roles played by the neuroprotective aspect of microglia in acute neuroinflammatory processes.


Subject(s)
Carrier Proteins/biosynthesis , Positron-Emission Tomography/methods , Receptor, Cannabinoid, CB2/biosynthesis , Receptors, GABA-A/biosynthesis , Stroke/diagnostic imaging , Stroke/metabolism , Animals , Frontal Lobe/diagnostic imaging , Frontal Lobe/metabolism , Inflammation/diagnostic imaging , Inflammation/metabolism , Male , Parietal Lobe/diagnostic imaging , Parietal Lobe/metabolism , Rats , Rats, Sprague-Dawley
2.
Synapse ; 65(3): 207-14, 2011 Mar.
Article in English | MEDLINE | ID: mdl-20665726

ABSTRACT

We evaluated sequential changes in rat brain function up to 14 days after focal ischemic insult with a small animal positron emission tomography (PET). Unilateral focal ischemic cerebral damage was induced by left middle cerebral artery occlusion with a photochemically induced thrombosis (PIT) method. PET scans were conducted with [(11)C](R)-PK11195 ([(11)C](R)-PK) for peripheral benzodiazepine receptor (PBR), [(11)C]flumazenil ([(11)C]FMZ) for central benzodiazepine receptor (CBR), and [(18)F]fluoro-2-deoxy-D-glucose ([(18)F]FDG) for glucose metabolism at before (as "Normal") and after PIT. At 1 and 3 days after PIT, [(18)F]FDG indicated lower uptake in the infarct area. Interestingly, unexpectedly high-[(18)F]FDG uptake was observed in the peri-infarct area surrounding the infarct area at day 7. The high-[(18)F]FDG uptake region completely overlapped with the high-[(11)C](R)-PK uptake region at day 7, which resulted in the underestimation of neuronal damage. Immunohistochemical data also suggested that the high-[(18)F]FDG uptake peak at day 7 was caused by inflammation including microglial cell activation. In contrast, imaging with [(11)C]FMZ indicated cortical neuronal damage on days 7 and 14 without any disturbance by microglial formation. These results indicated that [(18)F]FDG might not be a suitable ligand for ischemic neuronal damage detection from acute to subacute phases.


Subject(s)
Fluorodeoxyglucose F18 , Infarction, Middle Cerebral Artery/diagnostic imaging , Isoquinolines , Neurons/diagnostic imaging , Positron-Emission Tomography/methods , Radiopharmaceuticals , Animals , Carbon Radioisotopes , Immunohistochemistry , Infarction, Middle Cerebral Artery/pathology , Neurons/pathology , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...