Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 89(10): 10J120, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30399786

ABSTRACT

Collisional merging experiments of a field-reversed configuration (FRC) plasma at the super-Alfvénic velocity have been conducted in the FAT (FRC Amplification via Translation)-CM (Collisional Merging) device. In the experiments, two FRCs are collided and merged in a confinement section with a quasi-static confinement magnetic field. Therefore, it is necessary to measure the high-frequency pulsed magnetic field superposed on a quasi-stationary signal. The magnetic field is generally measured by a magnetic coil probe in the pulse discharge experiments; however, in such measurements, errors arise in the low-frequency band in the conducted FRC experiments. Therefore, a Hall sensor has been applied for low-frequency magnetic field measurements in the FAT-CM experiments. Calibration of the Hall sensor involves confirming that the sensor has a sufficient response speed and linear characteristics for the magnetic field with a rising time of approximately 240 µs and that its output voltage does not saturate up to a magnetic field of 0.7 T. Combination of the Hall sensor and the magnetic coil probe ensures a comprehensive measurement of the magnetic field in the range of FAT-CM experiments. In this study, accurate magnetic measurements were performed in a collisional merging experiment in the FAT-CM device by using a combined magnetic diagnostic system.

2.
Rev Sci Instrum ; 89(10): 10J114, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30399830

ABSTRACT

Field-reversed configuration (FRC) Amplification via Translation-Collisional Merging (FAT-CM) experiments have recently commenced to study physics phenomena of colliding and merged FRC plasma states. Two independently formed FRCs are translated into the confinement region of the FAT-CM device, collided near the mid-plane of the device with a relative speed of up to ∼400 km/s, and a final merged FRC plasma state is achieved. To measure internal magnetic field profiles of the translated and merged FRC plasmas as well as to understand its collisional-merging process, an internal magnetic probe array, developed by TAE Technologies, has been installed in the mid-plane of the FAT-CM device. Initial magnetic field measurements indicate that both the translated and the merged FRC plasma states exhibit a clear field-reversed structure, which is qualitatively in good agreement with 2D MHD simulation. It is found and verified that a sufficient mirror field in the confinement region is required for colliding FRCs to be fully merged into a single FRC plasma state.

3.
Rev Sci Instrum ; 89(10): 10E108, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30399871

ABSTRACT

We have been conducting compact toroid (CT) collision and merging experiments by using two magnetized coaxial plasma guns. As is well known, an actual CT/plasmoid moves macroscopically in a confining magnetic field. Therefore, three-dimensional measurements are important in understanding the behavior of the CTs. To observe the macroscopic process, we adopted a fast-framing camera (ULTRA Cam HS-106E) developed by NAC Image Technology. The characteristics of this camera are as follows: a CCD color sensor, capable of capturing 120 images during one sequence with a frame rate of up to 1.25 MHz. Using this camera, we captured the global motion of a CT inside the magnetic field and the collision of two CTs at the mid-plane of the experimental device. Additionally, by using a color sensor, we captured the global change in the plasma emission of visible light during the CT collision/merging process. As a result of these measurements, we determined the CT's global motion and the changes in the CT's shape and visible emission. The detailed system setup and experimental results are presented and discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...