Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
2.
Sci Data ; 11(1): 32, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38177140

ABSTRACT

National parks and other protected areas are important for preserving landscapes and biodiversity worldwide. An essential component of the mission of the United States (U.S.) National Park Service (NPS) requires understanding and maintaining accurate inventories of species on protected lands. We describe a new, national-scale synthesis of amphibian species occurrence in the NPS system. Many park units have a list of amphibian species observed within their borders compiled from various sources and available publicly through the NPSpecies platform. However, many of the observations in NPSpecies remain unverified and the lists are often outdated. We updated the amphibian dataset for each park unit by collating old and new park-level records and had them verified by regional experts. The new dataset contains occurrence records for 292 of the 424 NPS units and includes updated taxonomy, international and state conservation rankings, hyperlinks to a supporting reference for each record, specific notes, and related fields which can be used to better understand and manage amphibian biodiversity within a single park or group of parks.


Subject(s)
Biodiversity , Parks, Recreational , Animals , Amphibians , Conservation of Natural Resources , United States
3.
Conserv Physiol ; 11(1): coad078, 2023.
Article in English | MEDLINE | ID: mdl-38026797

ABSTRACT

Non-invasive methods are important to the field of conservation physiology to reduce negative effects on organisms being studied. Glucocorticoid (GC) hormones are often used to assess health of individuals, but collection methods can be invasive. Many amphibians are imperiled worldwide, and saliva is a non- or semi-invasive matrix to measure GCs that has been partially validated for only four amphibian species. Validation ensures that assays are reliable and can detect changes in saliva corticosterone (sCORT) after exposure to stressors, but it is also necessary to ensure sCORT concentrations are correlated with plasma concentrations. To help validate the use of saliva in assessing CORT responses in amphibians, we captured uniquely marked Columbia spotted frogs (Rana luteiventris) on sequential days and collected baseline and stress-induced (after handling) samples. For a subset of individuals, we collected and quantified CORT in both saliva and blood samples, which have not been compared for amphibians. We tested several aspects of CORT responses and, by collecting across separate days, measured repeatability of CORT responses across days. We also evaluated whether methods common to amphibian conservation, such as handling alone or handling, clipping a toe and tagging elevated sCORT. Similar to previous studies, we show that sCORT is reliable concerning parallelism, recovery, precision and sensitivity. sCORT was weakly correlated with plasma CORT (R2 = 0.21), and we detected elevations in sCORT after handling, demonstrating biological validation. Toe clipping and tagging did not increase sCORT over handling alone, but repeated handling elevated sCORT for ~72 hours. However, sCORT responses were highly variable and repeatability was low within individuals and among capture sessions, contrary to previous studies with urinary and waterborne CORT. sCORT is a semi-invasive and rapid technique that could be useful to assess effects of anthropogenic change and conservation efforts, but will require careful study design and future validation.

4.
Environ Sci Technol ; 57(45): 17511-17521, 2023 11 14.
Article in English | MEDLINE | ID: mdl-37902062

ABSTRACT

Mercury (Hg) is a toxic contaminant that has been mobilized and distributed worldwide and is a threat to many wildlife species. Amphibians are facing unprecedented global declines due to many threats including contaminants. While the biphasic life history of many amphibians creates a potential nexus for methylmercury (MeHg) exposure in aquatic habitats and subsequent health effects, the broad-scale distribution of MeHg exposure in amphibians remains unknown. We used nonlethal sampling to assess MeHg bioaccumulation in 3,241 juvenile and adult amphibians during 2017-2021. We sampled 26 populations (14 species) across 11 states in the United States, including several imperiled species that could not have been sampled by traditional lethal methods. We examined whether life history traits of species and whether the concentration of total mercury in sediment or dragonflies could be used as indicators of MeHg bioaccumulation in amphibians. Methylmercury contamination was widespread, with a 33-fold difference in concentrations across sites. Variation among years and clustered subsites was less than variation across sites. Life history characteristics such as size, sex, and whether the amphibian was a frog, toad, newt, or other salamander were the factors most strongly associated with bioaccumulation. Total Hg in dragonflies was a reliable indicator of bioaccumulation of MeHg in amphibians (R2 ≥ 0.67), whereas total Hg in sediment was not (R2 ≤ 0.04). Our study, the largest broad-scale assessment of MeHg bioaccumulation in amphibians, highlights methodological advances that allow for nonlethal sampling of rare species and reveals immense variation among species, life histories, and sites. Our findings can help identify sensitive populations and provide environmentally relevant concentrations for future studies to better quantify the potential threats of MeHg to amphibians.


Subject(s)
Mercury , Methylmercury Compounds , Odonata , Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/analysis , Mercury/analysis , Amphibians , Environmental Monitoring
5.
Sci Total Environ ; 880: 163160, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37003337

ABSTRACT

To inform responsible energy development, it is important to understand the ecological effects of contamination events. Wastewaters, a common byproduct of oil and gas extraction, often contain high concentrations of sodium chloride (NaCl) and heavy metals (e.g., strontium and vanadium). These constituents can negatively affect aquatic organisms, but there is scarce information for how wastewaters influence potentially distinct microbiomes in wetland ecosystems. Additionally, few studies have concomitantly investigated effects of wastewaters on the habitat (water and sediment) and skin microbiomes of amphibians or relationships among these microbial communities. We sampled microbiomes of water, sediment, and skin of four larval amphibian species across a gradient of chloride contamination (0.04-17,500 mg/L Cl) in the Prairie Pothole Region of North America. We detected 3129 genetic phylotypes and 68 % of those phylotypes were shared among the three sample types. The most common shared phylotypes were Proteobacteria, Firmicutes, and Bacteroidetes. Salinity of wastewaters increased dissimilarity within all three microbial communities, but not the diversity or richness of water and skin microbial communities. Strontium was associated with lower diversity and richness of sediment microbial communities, but not those of water or amphibian skin, likely because metal deposition occurs in sediment when wetlands dry. Based on Bray Curtis distance matrices, sediment microbiomes were similar to those of water, but neither had substantial overlap with amphibian microbiomes. Species identity was the strongest predictor of amphibian microbiomes; frog microbiomes were similar but differed from that of the salamander, whose microbiome had the lowest richness and diversity. Understanding how effects of wastewaters on the dissimilarity, richness, and diversity of microbial communities also influence the ecosystem function of communities will be an important next step. However, our study provides novel insight into the characteristics of, and associations among, different wetland microbial communities and effects of wastewaters from energy production.


Subject(s)
Metals, Heavy , Microbiota , Animals , Wastewater , Water , Anura , Sodium Chloride , Strontium
6.
Integr Zool ; 18(1): 2-14, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35394698

ABSTRACT

Species with especially close dependence on the environment to meet physiological requirements, such as ectotherms, are highly susceptible to the impacts of climate change. Climate change is occurring rapidly in the Subarctic and Arctic, but there is limited knowledge on ectotherm physiology in these landscapes. We investigated how environmental conditions and habitat characteristics influence the physiological conditions and habitat use of wood frogs (Rana sylvatica) in a Subarctic landscape near Churchill, Manitoba (Canada). We used plaster models to estimate water loss rates and surface body temperatures among different habitat types and at specific locations used by radio-tracked frogs. Water loss (R2 = 0.67) and surface temperature (R2 = 0.80) of plaster models was similar to that of live frogs. Model-based water loss rates were greater in tundra habitat than in boreal forest and ecotone habitat. Habitat use of wood frogs was strongly tied with available surface moisture and decreased water loss rates that were observed with plaster models. Environmental conditions, such as wind speed and ground temperature, explained 58% and 91% of the variation in water balance and temperature of plaster models. Maintaining physiological conditions may be challenging for semi-aquatic ectotherms in environments vulnerable to future climate change. The ability to predict physiological conditions based on environmental conditions, as demonstrated in our study, can help understand how wildlife will respond to climatic changes.


Subject(s)
Anura , Ecosystem , Animals , Tundra , Ranidae , Climate Change , Water
7.
Integr Zool ; 18(1): 27-44, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35848709

ABSTRACT

Salinity (sodium chloride, NaCl) from anthropogenic sources is a persistent contaminant that negatively affects freshwater taxa. Amphibians can be susceptible to salinity, but some species are innately or adaptively tolerant. Physiological mechanisms mediating tolerance to salinity are still unclear, but changes in osmoregulatory hormones such as corticosterone (CORT) and aldosterone (ALDO) are prime candidates. We exposed larval barred tiger salamanders (Ambystoma mavortium) to environmentally relevant NaCl treatments (<32-4000 mg·L-1 ) for 24 days to test effects on growth, survival, and waterborne CORT responses. Of those sampled, we also quantified waterborne ALDO from a subset. Using a glucocorticoid antagonist (RU486), we also experimentally suppressed CORT signaling of some larvae to determine if CORT mediates effects of salinity. There were no strong differences in survival among salinity treatments, but salinity reduced dry mass, snout-vent length, and body condition while increasing water content of larvae. High survival and sublethal effects demonstrated that salamanders were physiologically challenged but could tolerate the experimental concentrations. CORT signaling did not attenuate sublethal effects of salinity. Baseline and stress-induced (after an acute stressor, shaking) CORT were not influenced by salinity. ALDO was correlated with baseline CORT, suggesting it could be difficult to decouple the roles of CORT and ALDO. Future studies comparing ALDO and CORT responses of adaptively tolerant and previously unexposed populations could be beneficial to understand the roles of these hormones in tolerance to salinity. Nevertheless, our study enhances our understanding of the roles of corticosteroid hormones in mediating effects of a prominent anthropogenic stressor.


Subject(s)
Ambystoma , Salinity , Animals , Larva , Sodium Chloride , Corticosterone/pharmacology , Aldosterone
8.
Ecol Appl ; 33(2): e2785, 2023 03.
Article in English | MEDLINE | ID: mdl-36478292

ABSTRACT

Invasive species and emerging infectious diseases are two of the greatest threats to biodiversity. American Bullfrogs (Rana [Lithobates] catesbeiana), which have been introduced to many parts of the world, are often linked with declines in native amphibians via predation and the spread of emerging pathogens such as amphibian chytrid fungus (Batrachochytrium dendrobatidis [Bd]) and ranaviruses. Although many studies have investigated the potential role of bullfrogs in the decline of native amphibians, analyses that account for shared habitat affinities and imperfect detection have found limited support for clear effects. Similarly, the role of bullfrogs in shaping the patch-level distribution of pathogens is unclear. We used eDNA methods to sample 233 sites in the southwestern USA and Sonora, Mexico (2016-2018) to estimate how the presence of bullfrogs affects the occurrence of four native amphibians, Bd, and ranaviruses. Based on two-species, dominant-subordinate occupancy models fitted in a Bayesian context, federally threatened Chiricahua Leopard Frogs (Rana chiricahuensis) and Western Tiger Salamanders (Ambystoma mavortium) were eight times (32% vs. 4%) and two times (36% vs. 18%), respectively, less likely to occur at sites where bullfrogs occurred. Evidence for the negative effects of bullfrogs on Lowland Leopard Frogs (Rana yavapaiensis) and Northern Leopard Frogs (Rana pipiens) was less clear, possibly because of smaller numbers of sites where these native species still occurred and because bullfrogs often occur at lower densities in streams, the primary habitat for Lowland Leopard Frogs. At the community level, Bd was most likely to occur where bullfrogs co-occurred with native amphibians, which could increase the risk to native species. Ranaviruses were estimated to occur at 33% of bullfrog-only sites, 10% of sites where bullfrogs and native amphibians co-occurred, and only 3% of sites where only native amphibians occurred. Of the 85 sites where we did not detect any of the five target amphibian species, we also did not detect Bd or ranaviruses; this suggests other hosts do not drive the distribution of these pathogens in our study area. Our results provide landscape-scale evidence that bullfrogs reduce the occurrence of native amphibians and increase the occurrence of pathogens, information that can clarify risks and aid the prioritization of conservation actions.


Subject(s)
Chytridiomycota , Animals , Rana catesbeiana/microbiology , Bayes Theorem , Amphibians , Ranidae , Biodiversity
9.
Science ; 376(6600): 1459-1466, 2022 06 24.
Article in English | MEDLINE | ID: mdl-35737773

ABSTRACT

Comparative studies of mortality in the wild are necessary to understand the evolution of aging; yet, ectothermic tetrapods are underrepresented in this comparative landscape, despite their suitability for testing evolutionary hypotheses. We present a study of aging rates and longevity across wild tetrapod ectotherms, using data from 107 populations (77 species) of nonavian reptiles and amphibians. We test hypotheses of how thermoregulatory mode, environmental temperature, protective phenotypes, and pace of life history contribute to demographic aging. Controlling for phylogeny and body size, ectotherms display a higher diversity of aging rates compared with endotherms and include phylogenetically widespread evidence of negligible aging. Protective phenotypes and life-history strategies further explain macroevolutionary patterns of aging. Analyzing ectothermic tetrapods in a comparative context enhances our understanding of the evolution of aging.


Subject(s)
Aging , Amphibians , Biological Evolution , Reptiles , Amphibians/classification , Amphibians/physiology , Animals , Longevity , Phylogeny , Reptiles/classification , Reptiles/physiology
10.
Gen Comp Endocrinol ; 317: 113972, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34958807

ABSTRACT

Increased salinity is an emerging contaminant of concern for aquatic taxa. For amphibians exposed to salinity, there is scarce information about the physiological effects and changes in osmoregulatory hormones such as corticosterone (CORT) and aldosterone (ALDO). Recent studies have quantified effects of salinity on CORT physiology of amphibians based on waterborne hormone collection methods, but much less is known about ALDO in iono- and osmoregulation of amphibians. We re-assayed waterborne hormone samples from a previous study to investigate effects of salinity (sodium chloride, NaCl) and a glucocorticoid receptor antagonist (RU486) on ALDO of northern leopard frog (Rana pipiens) larvae. We also investigated relationships between ALDO and CORT. Waterborne ALDO marginally decreased with increasing salinity and was, unexpectedly, positively correlated with baseline and stress-induced waterborne CORT. Importantly, ALDO increased when larvae were exposed to RU486, suggesting that RU486 may also suppress mineralocorticoid receptors or that negative feedback of ALDO is mediated through glucocorticoid receptors. Alternatively, CORT increases with RU486 treatment and might be a substrate for ALDO synthesis, which could account for increases in ALDO with RU486 treatment and the correlation between CORT and ALDO. ALDO was negatively correlated with percent water, such that larvae secreting more ALDO retained less water. Although sample sizes were limited and further validation and studies are warranted, our findings expand our understanding of adrenal steroid responses to salinization in amphibians and proposes new hypotheses regarding the co-regulation of ALDO and CORT.


Subject(s)
Aldosterone , Corticosterone , Aldosterone/pharmacology , Animals , Corticosterone/pharmacology , Glucocorticoids , Larva , Mifepristone/pharmacology , Rana pipiens , Receptors, Glucocorticoid , Salinity
11.
J Anim Ecol ; 91(6): 1222-1238, 2022 06.
Article in English | MEDLINE | ID: mdl-34048026

ABSTRACT

Temperature is a critical driver of ectotherm life-history strategies, whereby a warmer environment is associated with increased growth, reduced longevity and accelerated senescence. Increasing evidence indicates that thermal adaptation may underlie such life-history shifts in wild populations. Single nucleotide polymorphisms (SNPs) and copy number variants (CNVs) can help uncover the molecular mechanisms of temperature-driven variation in growth, longevity and senescence. However, our understanding of these mechanisms is still limited, which reduces our ability to predict the response of non-model ectotherms to global temperature change. In this study, we examined the potential role of thermal adaptation in clinal shifts of life-history traits (i.e. life span, senescence rate and recruitment) in the Columbia spotted frog Rana luteiventris along a broad temperature gradient in the western United States. We took advantage of extensive capture-recapture datasets of 20,033 marked individuals from eight populations surveyed annually for 14-18 years to examine how mean annual temperature and precipitation influenced demographic parameters (i.e. adult survival, life span, senescence rate, recruitment and population growth). After showing that temperature was the main climatic predictor influencing demography, we used RAD-seq data (50,829 SNPs and 6,599 putative CNVs) generated for 352 individuals from 31 breeding sites to identify the genomic signatures of thermal adaptation. Our results showed that temperature was negatively associated with annual adult survival and reproductive life span and positively associated with senescence rate. By contrast, recruitment increased with temperature, promoting the long-term viability of most populations. These temperature-dependent demographic changes were associated with strong genomic signatures of thermal adaptation. We identified 148 SNP candidates associated with temperature including three SNPs located within protein-coding genes regulating resistance to cold and hypoxia, immunity and reproduction in ranids. We also identified 39 CNV candidates (including within 38 transposable elements) for which normalized read depth was associated with temperature. Our study indicates that both SNPs and structural variants are associated with temperature and could eventually be found to play a functional role in clinal shifts in senescence rate and life-history strategies in R. luteiventris. These results highlight the potential role of different sources of molecular variation in the response of ectotherms to environmental temperature variation in the context of global warming.


Subject(s)
Anura , Biodiversity , Acclimatization , Animals , Genomics , Temperature
12.
Dis Aquat Organ ; 147: 149-154, 2021 Dec 16.
Article in English | MEDLINE | ID: mdl-34913443

ABSTRACT

Ranaviruses are emerging pathogens that have caused mortality events in amphibians worldwide. Despite the negative effects of ranaviruses on amphibian populations, monitoring efforts are still lacking in many areas, including in the Prairie Pothole Region (PPR) of North America. Some PPR wetlands in Montana and North Dakota (USA) have been contaminated by energy-related saline wastewaters, and increased salinity has been linked to greater severity of ranavirus infections. In 2017, we tested tissues from larvae collected at 7 wetlands that ranged in salinity from 26 to 4103 mg Cl l-1. In 2019, we used environmental DNA (eDNA) to test for ranaviruses in 30 wetlands that ranged in salinity from 26 to 11754 mg Cl l-1. A previous study (2013-2014) found that ranavirus-infected amphibians were common across North Dakota, including in some wetlands near our study area. Overall, only 1 larva tested positive for ranavirus infection, and we did not detect ranavirus in any eDNA samples. There are several potential reasons why we found so little evidence of ranaviruses, including low larval sample sizes, mismatch between sampling and disease occurrence, larger pore size of our eDNA filters, temporal variation in outbreaks, low host abundance, or low occurrence or prevalence of ranaviruses in the wetlands we sampled. We suggest future monitoring efforts be conducted to better understand the occurrence and prevalence of ranaviruses within the PPR.


Subject(s)
DNA Virus Infections , Ranavirus , Amphibians , Animals , DNA Virus Infections/epidemiology , DNA Virus Infections/veterinary , Grassland , Montana , North Dakota/epidemiology
13.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Article in English | MEDLINE | ID: mdl-34845023

ABSTRACT

Variation in temperature is known to influence mortality patterns in ectotherms. Even though a few experimental studies on model organisms have reported a positive relationship between temperature and actuarial senescence (i.e., the increase in mortality risk with age), how variation in climate influences the senescence rate across the range of a species is still poorly understood in free-ranging animals. We filled this knowledge gap by investigating the relationships linking senescence rate, adult lifespan, and climatic conditions using long-term capture-recapture data from multiple amphibian populations. We considered two pairs of related anuran species from the Ranidae (Rana luteiventris and Rana temporaria) and Bufonidae (Anaxyrus boreas and Bufo bufo) families, which diverged more than 100 Mya and are broadly distributed in North America and Europe. Senescence rates were positively associated with mean annual temperature in all species. In addition, lifespan was negatively correlated with mean annual temperature in all species except A. boreas In both R. luteiventris and A. boreas, mean annual precipitation and human environmental footprint both had negligible effects on senescence rates or lifespans. Overall, our findings demonstrate the critical influence of thermal conditions on mortality patterns across anuran species from temperate regions. In the current context of further global temperature increases predicted by Intergovernmental Panel on Climate Change scenarios, a widespread acceleration of aging in amphibians is expected to occur in the decades to come, which might threaten even more seriously the viability of populations and exacerbate global decline.


Subject(s)
Aging/metabolism , Anura/metabolism , Aging/physiology , Animals , Biodiversity , Bufonidae/metabolism , Climate Change/mortality , Europe , Global Warming/mortality , North America , Ranidae/metabolism , Temperature
14.
Environ Pollut ; 287: 117638, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34426379

ABSTRACT

Amphibian larvae are commonly used as indicators of aquatic ecosystem health because they are susceptible to contaminants. However, there is limited information on how species characteristics and trophic position influence contaminant loads in larval amphibians. Importantly, there remains a need to understand whether grazers (frogs and toads [anurans]) and predators (salamanders) provide comparable information on contaminant accumulation or if they are each indicative of unique environmental processes and risks. To better understand the role of trophic position in contaminant accumulation, we analyzed composite tissues for 10 metals from larvae of multiple co-occurring anuran and salamander species from 20 wetlands across the United States. We examined how metal concentrations varied with body size (anurans and salamanders) and developmental stage (anurans) and how the digestive tract (gut) influenced observed metal concentrations. Across all wetlands, metal concentrations were greater in anurans than salamanders for all metals tested except mercury (Hg), selenium (Se), and zinc (Zn). Concentrations of individual metals in anurans decreased with increasing weight and developmental stage. In salamanders, metal concentrations were less correlated with weight, indicating diet played a role in contaminant accumulation. Based on batches of similarly sized whole-body larvae compared to larvae with their digestive tracts removed, our results indicated that tissue type strongly affected perceived concentrations, especially for anurans (gut represented an estimated 46-97% of all metals except Se and Zn). This suggests the reliability of results based on whole-body sampling could be biased by metal, larval size, and development. Overall, our data shows that metal concentrations differs between anurans and salamanders, which suggests that metal accumulation is unique to feeding behavior and potentially trophic position. To truly characterize exposure risk in wetlands, species of different life histories, sizes and developmental stages should be included in biomonitoring efforts.


Subject(s)
Ecosystem , Metals , Animals , Bufonidae , Larva , Reproducibility of Results
15.
Environ Toxicol Chem ; 40(11): 3137-3147, 2021 11.
Article in English | MEDLINE | ID: mdl-34407239

ABSTRACT

Salinity (sodium chloride [NaCl]) is a prevalent and persistent contaminant that negatively affects freshwater ecosystems. Although most studies focus on effects of salinity from road salts (primarily NaCl), high-salinity wastewaters from energy extraction (wastewaters) could be more harmful because they contain NaCl and other toxic components. Many amphibians are sensitive to salinity, and their eggs are thought to be the most sensitive life-history stage. However, there are few investigations with salinity that include eggs and larvae sequentially in long-term exposures. We investigated the relative effects of wastewaters from a large energy reserve, the Williston Basin (USA), and NaCl on northern leopard (Rana pipiens) and boreal chorus (Pseudacris maculata) frogs. We exposed eggs and tracked responses through larval stages (for 24 days). Wastewaters and NaCl caused similar reductions in hatching and larval survival, growth, development, and activity, while also increasing deformities. Chorus frog eggs and larvae were more sensitive to salinity than leopard frogs, suggesting species-specific responses. Contrary to previous studies, eggs of both species were less sensitive to salinity than larvae. Our ecologically relevant exposures suggest that accumulating effects can reduce survival relative to starting experiments with unexposed larvae. Alternatively, egg casings of some species may provide some protection against salinity. Notably, effects of wastewaters on amphibians were predominantly due to NaCl rather than other components. Therefore, findings from studies with other sources of increased salinity (e.g., road salts) could guide management of wastewater-contaminated ecosystems, and vice versa, to mitigate effects of salinization. Environ Toxicol Chem 2021;40:3137-3147. © 2021 SETAC.


Subject(s)
Gastropoda , Wastewater , Animals , Anura/physiology , Ecosystem , Larva , Rana pipiens , Saline Solution/pharmacology , Salinity , Salts , Sodium Chloride/toxicity , Wastewater/toxicity
16.
J Exp Zool A Ecol Integr Physiol ; 335(8): 703-715, 2021 10.
Article in English | MEDLINE | ID: mdl-34370904

ABSTRACT

Life-history tradeoffs are common across taxa, but growth-survival tradeoffs-usually enhancing survival at a cost to growth-are less frequently investigated. Increased salinity (NaCl) is a prevalent anthropogenic disturbance that may cause a growth-survival tradeoff for larval amphibians. Although physiological mechanisms mediating tradeoffs are seldom investigated, hormones are prime candidates. Corticosterone (CORT) is a steroid hormone that independently influences survival and growth and may provide mechanistic insight into growth-survival tradeoffs. We conducted a 24-day experiment to test effects of salinity (<32-4000 mg/L) on growth, development, survival, CORT responses, and tradeoffs among traits of larval Northern Leopard Frogs (Rana pipiens). We also experimentally suppressed CORT signaling to determine whether CORT signaling mediates effects of salinity and a growth-survival tradeoff. Increased salinity reduced survival, growth, and development. Suppressing CORT signaling in conjunction with salinity reduced survival further but also attenuated the negative effects of salinity on growth, development, and water content. CORT of control larvae increased or was stable with growth and development but decreased with growth and development for those exposed to salinity. Therefore, salinity dysregulated CORT physiology. Across all treatments, larvae that survived had higher CORT than larvae that died. By manipulating CORT signaling, we provide strong evidence that CORT physiology mediates the outcome of a growth-survival tradeoff and enhances survival. To our knowledge, this is the first study to concomitantly measure tradeoffs between growth and survival and experimentally link these changes to CORT physiology. Identifying mechanistic links between stressors and fitness-related outcomes is critical to enhance our understanding of tradeoffs.


Subject(s)
Corticosterone , Salinity , Amphibians , Animals , Larva
17.
Conserv Physiol ; 9(1): coab049, 2021.
Article in English | MEDLINE | ID: mdl-34249364

ABSTRACT

Physiological biomarkers are commonly used to assess the health of taxa exposed to natural and anthropogenic stressors. Glucocorticoid (GC) hormones are often used as indicators of physiological stress in wildlife because they affect growth, reproduction and survival. Increased salinity from human activities negatively influences amphibians and their corticosterone (CORT; the main amphibian GC) physiology; therefore, CORT could be a useful biomarker. We evaluated whether waterborne CORT could serve as a biomarker of salt stress for three free-living amphibian species that vary in their sensitivity to salinity: boreal chorus frogs (Pseudacris maculata), northern leopard frogs (Rana pipiens) and barred tiger salamanders (Ambystoma mavortium). Across a gradient of contamination from energy-related saline wastewaters, we tested the effects of salinity on baseline and stress-induced waterborne CORT of larvae. Stress-induced, but not baseline, CORT of leopard frogs increased with increasing salinity. Salinity was not associated with baseline or stress-induced CORT of chorus frogs or tiger salamanders. Associations between CORT and salinity were also not related to species-specific sensitivities to salinity. However, we detected background environmental CORT (ambient CORT) in all wetlands and spatial variation was high within and among wetlands. Higher ambient CORT was associated with lower waterborne CORT of larvae in wetlands. Therefore, ambient CORT likely confounded associations between waterborne CORT and salinity in our analysis and possibly influenced physiology of larvae. We hypothesize that larvae may passively take up CORT from their environment and downregulate endogenous CORT. Although effects of some hormones (e.g. oestrogen) and endocrine disruptors on aquatic organisms are well described, studies investigating the occurrence and effects of ambient CORT are limited. We provide suggestions to improve collection methods, reduce variability and avoid confounding effects of ambient CORT. By making changes to methodology, waterborne CORT could still be a promising, non-invasive conservation tool to evaluate effects of salinity on amphibians.

18.
Ecology ; 102(5): e03315, 2021 05.
Article in English | MEDLINE | ID: mdl-33630306

ABSTRACT

First-order dynamic occupancy models (FODOMs) are a class of state-space model in which the true state (occurrence) is observed imperfectly. An important assumption of FODOMs is that site dynamics only depend on the current state and that variations in dynamic processes are adequately captured with covariates or random effects. However, it is often difficult to understand and/or measure the covariates that generate ecological data, which are typically spatiotemporally correlated. Consequently, the non-independent error structure of correlated data causes underestimation of parameter uncertainty and poor ecological inference. Here, we extend the FODOM framework with a second-order Markov process to accommodate site memory when covariates are not available. Our modeling framework can be used to make reliable inference about site occupancy, colonization, extinction, turnover, and detection probabilities. We present a series of simulations to illustrate the data requirements and model performance. We then applied our modeling framework to 13 yr of data from an amphibian community in southern Arizona, USA. In this analysis, we found residual temporal autocorrelation of population processes for most species, even after accounting for long-term drought dynamics. Our approach represents a valuable advance in obtaining inference on population dynamics, especially as they relate to metapopulations.


Subject(s)
Droughts , Models, Biological , Arizona , Ecosystem , Population Dynamics
19.
Aquat Toxicol ; 228: 105626, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32992088

ABSTRACT

Increasing salinity in freshwater environments is a growing problem due both to the negative influences of salts on ecosystems and their accumulation and persistence in environments. Two major sources of increased salinity from sodium chloride salts (NaCl) are saline wastewaters co-produced during energy production (herein, wastewaters) and road salts. Effects of road salts have received more attention, but legacy contamination from wastewaters is widespread in some regions and spills still occur. Amphibians are sensitive to contaminants, including NaCl, because of their porous skin and osmoregulatory adaptations to freshwater. However, similarities and differences between effects of wastewaters and road salts have not been investigated. Therefore, we investigated the relative influence of wastewaters and NaCl at equivalent concentrations of chloride on three larval amphibian species that occur in areas with increased salinity. We determined acute toxicity and growth effects on Boreal Chorus Frogs (Pseudacris maculata), Northern Leopard Frogs (Rana pipiens), and Barred Tiger Salamanders (Ambystoma mavortium). We posited that wastewaters would have additive effects on amphibians compared to NaCl because wastewaters often have additional toxic heavy metals and other contaminants. For NaCl, toxicity was higher for frogs than the salamander. Toxicity of wastewaters was also similar between chorus and leopard frogs. Only chorus frog survival was lower when exposed to wastewater compared to NaCl. Mass and length of leopard and chorus frog larvae decreased with increasing salinity after only 96 hours of exposure but did not for tiger salamanders. Size of leopard frogs was lower when exposed to NaCl compared to wastewater. However, growth effects were similar between wastewater and NaCl for chorus frogs. Taken together, our results suggest that previous studies on effects of road salt could inform future studies and management of wastewater-contaminated ecosystems, and vice versa. Nevertheless, effects of road salts and wastewaters may be context-, species-, and trait-specific and require further investigations. The negative influence of salts on imperiled amphibians underscores the need to restore landscapes with increased salinity and reduce future salinization of freshwater ecosystems.


Subject(s)
Fresh Water/chemistry , Larva/drug effects , Sodium Chloride/toxicity , Wastewater/chemistry , Water Pollutants, Chemical/toxicity , Animals , Anura , Ecosystem , Grassland , Salinity , Toxicity Tests, Acute
20.
Sci Rep ; 10(1): 13012, 2020 08 03.
Article in English | MEDLINE | ID: mdl-32747670

ABSTRACT

The salamander chytrid fungus (Batrachochytrium salamandrivorans [Bsal]) is causing massive mortality of salamanders in Europe. The potential for spread via international trade into North America and the high diversity of salamanders has catalyzed concern about Bsal in the U.S. Surveillance programs for invading pathogens must initially meet challenges that include low rates of occurrence on the landscape, low prevalence at a site, and imperfect detection of the diagnostic tests. We implemented a large-scale survey to determine if Bsal was present in North America designed to target taxa and localities where Bsal was determined highest risk to be present based on species susceptibility and geography. Our analysis included a Bayesian model to estimate the probability of occurrence of Bsal given our prior knowledge of the occurrence and prevalence of the pathogen. We failed to detect Bsal in any of 11,189 samples from 594 sites in 223 counties within 35 U.S. states and one site in Mexico. Our modeling indicates that Bsal is highly unlikely to occur within wild amphibians in the U.S. and suggests that the best proactive response is to continue mitigation efforts against the introduction and establishment of the disease and to develop plans to reduce impacts should Bsal establish.


Subject(s)
Amphibians/microbiology , Batrachochytrium/isolation & purification , Amphibians/classification , Animals , Batrachochytrium/genetics , Bayes Theorem , DNA, Fungal/genetics , North America , Polymerase Chain Reaction , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...