Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 60(20): 15724-15743, 2021 Oct 18.
Article in English | MEDLINE | ID: mdl-34605635

ABSTRACT

Reported are the syntheses, crystal structures, and photophysical properties of 28, novel lanthanide compounds across five structural types, [Ln(3-NO2Tp)2(NO3)] (1-Ln, Ln = La-Tm, except Pm), [Bu4N][Ln(3-NO2Tp)(NO3)3] (2-Ln, Ln = Yb, Lu), [Eu(3-NO2Tp)2Cl(H2O)]·2iPrOH (3-Eu), [{Ln(3-NO2Tp)2}2(µ2-CO3)]·MeOH (4-Ln, Ln = La-Gd, except Pm), and [{Ln(3-NO2Tp)}4(µ2-OMe)6(µ4-O)] (5-Ln, Ln = Pr-Tb, except Pm) with the 3-nitrotrispyrazolylborate (3-NO2Tp-) ligand. The reaction of methanol or isopropanol solutions of LnX3 (X = Cl, NO3) with the tetrabutyl ammonium salt of the flexidentate 3-NO2Tp- ([Bu4N][3-NO2Tp]) yields Ln(3-NO2Tp)x complexes of various nuclearities as either monomers (1-Ln, 2-Ln, 3-Eu), dimers (4-Ln), or tetramers (5-Ln) owing to the efficient conversion of atmospheric CO2 to CO32- (dimers) or ligand controlled solvolysis of lanthanide ions (tetramers). 3-NO2Tp- is an efficient sensitizer for both the visible and near-IR (NIR) emissions of most of the lanthanide series, except thulium. Optical measurements, supported by density functional theory calculations, indicate that the dual visible and NIR Ln3+ emission arises from two intraligand charge transfer (ILCT) transitions of 3-NO2Tp-. This is the first report of lanthanide complexes with a nitro-functionalized pyrazolylborate ligand. The derivatization of the known Tp- ligand results in new coordination chemistry governed by the increased denticity of 3-NO2Tp-, imparting remarkable structural diversity and charge transfer properties to resultant lanthanide complexes.

SELECTION OF CITATIONS
SEARCH DETAIL
...