Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Orthop J Sports Med ; 2(4): 2325967114530075, 2014 Apr.
Article in English | MEDLINE | ID: mdl-26535320

ABSTRACT

BACKGROUND: Surgical reconstruction of the anterior cruciate ligament (ACL) can be complicated by incorrect and variable tunnel placement, graft tunnel mismatch, cortical breaches, and inadequate fixation due to screw divergence. This is the first report describing the use of a C-arm with image intensifier employed for the sole purpose of eliminating those complications during transtibial ACL reconstruction. PURPOSE: To determine if the use of a C-arm with image intensifier during arthroscopically assisted transtibial ACL reconstruction (IIAA-TACLR) eliminated common complications associated with bone-patellar tendon-bone ACL reconstruction, including screw divergence, cortical breaches, graft-tunnel mismatch, and improper positioning of the femoral and tibial tunnels. STUDY DESIGN: Case series; Level of evidence, 4. METHODS: A total of 110 consecutive patients (112 reconstructed knees) underwent identical IIAA-TACLR using a bone-patellar tendon-bone autograft performed by a single surgeon. Intra- and postoperative radiographic images and operative reports were evaluated for each patient looking for evidence of cortical breeching and screw divergence. Precision of femoral tunnel placement was evaluated using a sector map modified from Bernard et al. Graft recession distance and tibial α angles were recorded. RESULTS: There were no femoral or tibial cortical breaches noted intraoperatively or on postoperative images. There were no instances of loss of fixation screw major thread engagement. There were no instances of graft-tunnel mismatch. The positions of the femoral tunnels were accurate and precise, falling into the desired sector of our location map (sector 1). Tibial α angles and graft recession distances varied widely. CONCLUSION: The use of the C-arm with image intensifier enabled accurate and precise tunnel placement and completely eliminated cortical breach, graft-tunnel mismatch, and screw divergence during IIAA-TACLR by allowing incremental adjustment of the tibial tunnel and knee flexion angle. Incremental adjustment was essential to accomplish this. Importantly, a C-arm with image intensifier can be used with any ACL reconstruction that incorporates tunnels in the technique, with the expectation of increase in accuracy and precision and the elimination of common complications. CLINICAL RELEVANCE: The use of an image intensifier during transtibial ACL reconstruction will substantially reduce the common complications associated with the procedure and improve both accuracy and precision of tibial and femoral tunnel placement. Use of an image intensifier unit is generalizable to an individual surgeon's preferences for graft choices and drilling techniques and will be especially valuable when the intercondylar architecture is altered from injury, time, or prior surgery.

2.
Pediatr Res ; 52(5): 660-70, 2002 Nov.
Article in English | MEDLINE | ID: mdl-12409511

ABSTRACT

Recent non-placebo-controlled studies of the bisphosphonate pamidronate have shown it to be effective in reducing fractures and improving bone density in infants and children with osteogenesis imperfecta (OI). To evaluate the effects of bisphosphonate treatment in a controlled study, the oim/oim mouse model of OI was studied. Nursing infant mouse pups (approximately 2 wk old) with moderate to severe OI (oim/oim mouse) and age- and background-matched control mice (+/+) were treated either with the third-generation bisphosphonate alendronate (ALN), or with saline. Fracture risk, bone quality, and growth were evaluated over a 12-wk treatment period. ALN at a dose of 0.03 mg/kg/d or saline was administered via s.c. injection to infant oim/oim and wild-type (+/+) mice from 2 to 14 wk of age (n = 20 per subgroup). The average number of fractures sustained by the ALN-treated oim/oim mice was reduced significantly compared with the untreated oim/oim mice (0.7 +/- 0.7 fractures/mouse versus 2.0 +/- 0.2 fractures/mouse). Bone density increased significantly in the femur and the spine with treatment (2.0 +/- 0.5 versus 1.2 +/- 0.5 in femur and 2.1 +/- 0.5 versus1.6 +/- 0.5 in spine). Histologic evaluation revealed the percentage of metaphyseal tibial bone increased significantly with treatment in both +/+ and oim/oim mice. Mechanical testing revealed an increase in structural stiffness for both treated +/+ and oim/oim mice compared with untreated animals. None of the material properties examined were significantly altered with treatment, nor was spinal curvature affected. Weight gain and long bone growth were comparable in the treated and untreated oim/oim mice. In wild-type mice, femur lengths were significantly shorter in the treated mice compared with untreated counterparts. This animal study demonstrates that treatment of OI in mice as early as 2 wk of age with ALN appears to be effective in reducing fractures and increasing bone properties. Based on the data from this study, ALN therapy in infants with OI should prove to be effective.


Subject(s)
Alendronate/therapeutic use , Osteogenesis Imperfecta/drug therapy , Animals , Biomechanical Phenomena , Bone Density/drug effects , Bone and Bones/drug effects , Bone and Bones/pathology , Collagen Type I/deficiency , Disease Models, Animal , Drug Evaluation, Preclinical , Elasticity , Female , Fractures, Spontaneous/prevention & control , Humans , Male , Mice , Mice, Mutant Strains , Osteogenesis Imperfecta/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...