Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Sci Total Environ ; 736: 139690, 2020 Sep 20.
Article in English | MEDLINE | ID: mdl-32504867

ABSTRACT

Microplastic particles and fibers are increasingly being detected in our surface and ground waters as well as within a wide range of aquatic species. Their presence in the environment is largely due to in situ generation from physical and chemical weathering of larger plastics, and thus has left environmental community concerned in the post-banned era of microbead use in personal care products through the passage of Microbead-Free Waters Act in the United States. To improve understanding of secondary microplastic formation, accelerated weathering has been conducted on four materials (high-density polyethylene, high impact polystyrene, nylon 6, and polypropylene) under ultraviolet radiation (equivalent to 44 days in full sun) in simulated seawater. Physical and chemical characterization of the plastics were completed following ultraviolet exposure. This simulated weathering generated microfibers from high-density polyethylene and nylon 6, while high impact polystyrene and polypropylene did not physically degrade. The techniques used were applied to sediment samples containing plastic pellets collected from Cox Creek in Port Comfort, TX (near a large plastics manufacturer), which were purified for analysis and were found to contain microplastics composed of polypropylene and polyethylene. These findings can be used to determine degradation pathways and plastic source tracking, which can facilitate risk assessment and environmental management.

2.
Sci Total Environ ; 740: 140111, 2020 Oct 20.
Article in English | MEDLINE | ID: mdl-32562995

ABSTRACT

Many of the six million residents of unincorporated communities in the United States depend on well-water to meet their needs. One group of unincorporated communities is the colonias, located primarily in several southwestern U.S. states. Texas is home to the largest number of these self-built communities, of mostly low-income families, lacking basic infrastructure. While some states have regulations that mandate minimum infrastructure for these communities, water and sewage systems are still lacking for many of their residents. Unprotected wells and self-built septic/cesspool systems serve as the primary infrastructure for many such colonias. This research was designed to probe how wells and septic/cesspool systems are influenced by heavy rainfall events. Such events are hypothesized to impact water quality with regard to human health. Inorganic and microbiological water quality of the wells in nine colonias located in Nueces County, Texas, were evaluated during dry and wet periods. Nueces County was selected as an example based on its flooding history and the fact that many colonias there depend entirely on well-water and septic/cesspool systems. The results demonstrate that well-water quality in these communities varies seasonally with respect to arsenic (up to 35 µg/L) and bacterial contamination (Escherichia coli), dependent on the amount of rainfall, which leaves this population vulnerable to health risks during both wet and dry periods. Microbial community analyses were also conducted on selected samples. To explore similar seasonal contamination of well-water, an analysis of unincorporated communities, flooding frequency, and arsenic contamination in wells was conducted by county throughout the United States. This nationwide analysis indicates that unincorporated communities elsewhere in the United States are likely experiencing comparable challenges for potable water access because of a confluence of socioeconomic, infrastructural, and policy realities.


Subject(s)
Floods , Water Wells , Humans , Seasons , Southwestern United States , Texas , United States , Water Supply
3.
Sci Total Environ ; 711: 134450, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-31812391

ABSTRACT

The availability of safe water for potable purposes in Alaska Native communities is limited due to naturally occurring metals and contaminants released from anthropogenic activities, such as drilling and mining. The impacts of climate change are magnified in the arctic and sub-arctic regions and thus have the potential to mobilize contaminants and exacerbate the water contamination problem. Alaska Native communities are vulnerable to such changes in their water quality because of their remote location and limited access to resources. This study initiates an assessment of water quality, including its microbial ecology, in off-the-grid Alaskan water supplies (i.e., primarily groundwater wells). In particular, water quality data were collected from nine communities (22 ground water wells). Water quality analyses included basic water quality parameters, a suite of metals relevant to human health, and microbial community composition. Results revealed location-specific elevated arsenic concentrations based on the underlying geological formation, particularly in the areas located in the geological formation of the McHugh Complex. Diverse microbial communities were observed, and the grouping appeared to be based on elevation. These findings present evidence of compromised water quality in an understudied area in the United States. The results from this study should be considered as a snapshot in time, which highlight the importance for further systematic studies in similar off-the-grid communities.


Subject(s)
Groundwater , Arctic Regions , Humans , United States , Water Quality , Water Supply
SELECTION OF CITATIONS
SEARCH DETAIL
...