Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Clin Exp Immunol ; 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38642547

ABSTRACT

Obesity and type 2 diabetes (DM) are risk factors for severe COVID-19 outcomes, which disproportionately affect South Asian populations. This study aims to investigate the humoral and cellular immune responses to SARS-CoV-2 in adult COVID-19 survivors with obesity and DM in Bangladesh. In this cross-sectional study, SARS-CoV-2-specific antibody and T cell responses were investigated in 63 healthy and 75 PCR-confirmed COVID-19 recovered individuals in Bangladesh, during the pre-vaccination first wave of the COVID-19 pandemic in 2020. In COVID-19 survivors, SARS-CoV-2 infection induced robust antibody and T cell responses, which correlated with disease severity. After adjusting for age, sex, DM status, disease severity, and time since onset of symptoms, obesity was associated with decreased neutralising antibody titers, and increased SARS-CoV-2 spike-specific IFN-γ response along with increased proliferation and IL-2 production by CD8+ T cells. In contrast, DM was not associated with SARS-CoV-2-specific antibody and T cell responses after adjustment for obesity and other confounders. Obesity is associated with lower neutralising antibody levels and higher T cell responses to SARS-CoV-2 post COVID-19 recovery, while antibody or T cell responses remain unaltered in DM.

2.
Eur J Cell Biol ; 102(2): 151316, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37084657

ABSTRACT

The expression of the angiotensin-converting enzyme 2 (ACE2) is altered in multiple chronic kidney diseases like hypertension and renal fibrosis, where the signaling from the basal membrane proteins is critical for the development and progression of the various pathologies. Integrins are heterodimeric cell surface receptors that have important roles in the progression of these chronic kidney diseases by altering various cell signaling pathways in response to changes in the basement membrane proteins. It is unclear whether integrin or integrin-mediated signaling affects the ACE2 expression in the kidney. The current study tests the hypothesis that integrin ß1 regulates the expression of ACE2 in kidney epithelial cells. The role of integrin ß1 in ACE2 expression in renal epithelial cells was investigated by shRNA-mediated knockdown and pharmacological inhibition. In vivo studies were carried out using epithelial cell-specific deletion of integrin ß1 in the kidneys. Deletion of integrin ß1 from the mouse renal epithelial cells reduced the expression of ACE2 in the kidney. Furthermore, the downregulation of integrin ß1 using shRNA decreased ACE2 expression in human renal epithelial cells. ACE2 expression levels were also decreased in renal epithelial cells and cancer cells when treated with an integrin α2ß1 antagonist, BTT 3033. SARS-CoV-2 viral entry to human renal epithelial cells and cancer cells was also inhibited by BTT 3033. This study demonstrates that integrin ß1 positively regulates the expression of ACE2, which is required for the entry of SARS-CoV-2 into kidney cells.


Subject(s)
COVID-19 , Renal Insufficiency, Chronic , Humans , Animals , Mice , Integrin beta1/genetics , Integrin beta1/metabolism , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , SARS-CoV-2/metabolism , COVID-19/metabolism , COVID-19/pathology , Kidney/metabolism , Kidney/pathology , Epithelial Cells/metabolism , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/pathology
3.
J Neuroeng Rehabil ; 20(1): 15, 2023 01 27.
Article in English | MEDLINE | ID: mdl-36707846

ABSTRACT

BACKGROUND: Robots can generate rich kinematic datasets that have the potential to provide far more insight into impairments than standard clinical ordinal scales. Determining how to define the presence or absence of impairment in individuals using kinematic data, however, can be challenging. Machine learning techniques offer a potential solution to this problem. In the present manuscript we examine proprioception in stroke survivors using a robotic arm position matching task. Proprioception is impaired in 50-60% of stroke survivors and has been associated with poorer motor recovery and longer lengths of hospital stay. We present a simple cut-off score technique for individual kinematic parameters and an overall task score to determine impairment. We then compare the ability of different machine learning (ML) techniques and the above-mentioned task score to correctly classify individuals with or without stroke based on kinematic data. METHODS: Participants performed an Arm Position Matching (APM) task in an exoskeleton robot. The task produced 12 kinematic parameters that quantify multiple attributes of position sense. We first quantified impairment in individual parameters and an overall task score by determining if participants with stroke fell outside of the 95% cut-off score of control (normative) values. Then, we applied five machine learning algorithms (i.e., Logistic Regression, Decision Tree, Random Forest, Random Forest with Hyperparameters Tuning, and Support Vector Machine), and a deep learning algorithm (i.e., Deep Neural Network) to classify individual participants as to whether or not they had a stroke based only on kinematic parameters using a tenfold cross-validation approach. RESULTS: We recruited 429 participants with neuroimaging-confirmed stroke (< 35 days post-stroke) and 465 healthy controls. Depending on the APM parameter, we observed that 10.9-48.4% of stroke participants were impaired, while 44% were impaired based on their overall task score. The mean performance metrics of machine learning and deep learning models were: accuracy 82.4%, precision 85.6%, recall 76.5%, and F1 score 80.6%. All machine learning and deep learning models displayed similar classification accuracy; however, the Random Forest model had the highest numerical accuracy (83%). Our models showed higher sensitivity and specificity (AUC = 0.89) in classifying individual participants than the overall task score (AUC = 0.85) based on their performance in the APM task. We also found that variability was the most important feature in classifying performance in the APM task. CONCLUSION: Our ML models displayed similar classification performance. ML models were able to integrate more kinematic information and relationships between variables into decision making and displayed better classification performance than the overall task score. ML may help to provide insight into individual kinematic features that have previously been overlooked with respect to clinical importance.


Subject(s)
Deep Learning , Stroke Rehabilitation , Stroke , Humans , Stroke Rehabilitation/methods , Stroke/complications , Proprioception , Upper Extremity
4.
Nat Commun ; 13(1): 7472, 2022 12 03.
Article in English | MEDLINE | ID: mdl-36463279

ABSTRACT

Interactions with commensal microbes shape host immunity on multiple levels and play a pivotal role in human health and disease. Tissue-dwelling, antigen-specific T cells are poised to respond to local insults, making their phenotype important in the relationship between host and microbes. Here we show that MHC-II restricted, commensal-reactive T cells in the colon of both humans and mice acquire transcriptional and functional characteristics associated with innate-like T cells. This cell population is abundant and conserved in the human and murine colon and endowed with polyfunctional effector properties spanning classic Th1- and Th17-cytokines, cytotoxic molecules, and regulators of epithelial homeostasis. T cells with this phenotype are increased in ulcerative colitis patients, and their presence aggravates pathology in dextran sodium sulphate-treated mice, pointing towards a pathogenic role in colitis. Our findings add to the expanding spectrum of innate-like immune cells positioned at the frontline of intestinal immune surveillance, capable of acting as sentinels of microbes and the local cytokine milieu.


Subject(s)
Coleoptera , Colitis , Humans , Mice , Animals , Lymphocyte Count , Immunologic Surveillance , Colitis/chemically induced , Cytokines
5.
Environ Sci Pollut Res Int ; 29(22): 32651-32669, 2022 May.
Article in English | MEDLINE | ID: mdl-35220520

ABSTRACT

The skyrocketing demand and progressive technology have increased our dependency on electrical and electronic devices. However, the life span of these devices has been shortened because of rapid scientific expansions. Hence, massive volumes of electronic waste (e-waste) is generating day by day. Nevertheless, the ongoing management of e-waste has emerged as a major threat to sustainable economic development worldwide. In general, e-waste contains several toxic substances such as metals, plastics, and refractory oxides. Metals, particularly lead, mercury, nickel, cadmium, and copper along with some valuable metals such as rare earth metals, platinum group elements, alkaline and radioactive metal are very common; which can be extracted before disposing of the e-waste for reuse. In addition, many of these metals are hazardous. Therefore, e-waste management is an essential issue. In this study, we critically have reviewed the existing extraction processes and compared among different processes such as physical, biological, supercritical fluid technologies, pyro and hydrometallurgical, and hybrid methods used for metals extraction from e-waste. The review indicates that although each method has particular merits but hybrid methods are eco-friendlier with extraction efficiency > 90%. This study also provides insight into the technical challenges to the practical realization of metals extraction from e-waste sources.


Subject(s)
Electronic Waste , Waste Management , Electronic Waste/analysis , Metals , Plastics , Recycling/methods , Waste Management/methods
6.
Nat Commun ; 12(1): 2055, 2021 04 06.
Article in English | MEDLINE | ID: mdl-33824342

ABSTRACT

Identification of protective T cell responses against SARS-CoV-2 requires distinguishing people infected with SARS-CoV-2 from those with cross-reactive immunity to other coronaviruses. Here we show a range of T cell assays that differentially capture immune function to characterise SARS-CoV-2 responses. Strong ex vivo ELISpot and proliferation responses to multiple antigens (including M, NP and ORF3) are found in 168 PCR-confirmed SARS-CoV-2 infected volunteers, but are rare in 119 uninfected volunteers. Highly exposed seronegative healthcare workers with recent COVID-19-compatible illness show T cell response patterns characteristic of infection. By contrast, >90% of convalescent or unexposed people show proliferation and cellular lactate responses to spike subunits S1/S2, indicating pre-existing cross-reactive T cell populations. The detection of T cell responses to SARS-CoV-2 is therefore critically dependent on assay and antigen selection. Memory responses to specific non-spike proteins provide a method to distinguish recent infection from pre-existing immunity in exposed populations.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/immunology , COVID-19/virology , Cross Reactions/immunology , Immunoassay/methods , SARS-CoV-2/physiology , T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/epidemiology , Cell Proliferation , Cytokines/metabolism , HEK293 Cells , Health Personnel , Humans , Immunoglobulin G/immunology , Immunologic Memory , Interferon-gamma/metabolism , Pandemics , Peptides/metabolism , SARS-CoV-2/drug effects
7.
Nat Commun ; 11(1): 6385, 2020 12 14.
Article in English | MEDLINE | ID: mdl-33318491

ABSTRACT

The response to the coronavirus disease 2019 (COVID-19) pandemic has been hampered by lack of an effective severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antiviral therapy. Here we report the use of remdesivir in a patient with COVID-19 and the prototypic genetic antibody deficiency X-linked agammaglobulinaemia (XLA). Despite evidence of complement activation and a robust T cell response, the patient developed persistent SARS-CoV-2 pneumonitis, without progressing to multi-organ involvement. This unusual clinical course is consistent with a contribution of antibodies to both viral clearance and progression to severe disease. In the absence of these confounders, we take an experimental medicine approach to examine the in vivo utility of remdesivir. Over two independent courses of treatment, we observe a temporally correlated clinical and virological response, leading to clinical resolution and viral clearance, with no evidence of acquired drug resistance. We therefore provide evidence for the antiviral efficacy of remdesivir in vivo, and its potential benefit in selected patients.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Immunity, Humoral/drug effects , SARS-CoV-2/drug effects , Adenosine Monophosphate/therapeutic use , Adult , Alanine/therapeutic use , Antiviral Agents/therapeutic use , COVID-19/virology , Fever/prevention & control , Humans , Immunity, Humoral/immunology , Lymphocyte Count , Male , SARS-CoV-2/immunology , SARS-CoV-2/physiology , Treatment Outcome
8.
Preprint in English | medRxiv | ID: ppmedrxiv-20202929

ABSTRACT

A major issue in identification of protective T cell responses against SARS-CoV-2 lies in distinguishing people infected with SARS-CoV-2 from those with cross-reactive immunity generated by exposure to other coronaviruses. We characterised SARS-CoV-2 T cell immune responses in 168 PCR-confirmed SARS-CoV-2 infected subjects and 118 seronegative subjects without known SARS-CoV-2 exposure using a range of T cell assays that differentially capture immune cell function. Strong ex vivo ELISpot and proliferation responses to multiple antigens (including M, NP and ORF3) were found in those who had been infected by SARS-CoV-2 but were rare in pre-pandemic and unexposed seronegative subjects. However, seronegative doctors with high occupational exposure and recent COVID-19 compatible illness showed patterns of T cell responses characteristic of infection, indicating that these readouts are highly sensitive. By contrast, over 90% of convalescent or unexposed people showed proliferation and cellular lactate responses to spike subunits S1/S2, indicating pre-existing cross-reactive T cell populations. The detection of T cell responses to SARS-CoV-2 is therefore critically dependent on the choice of assay and antigen. Memory responses to specific non-spike proteins provides a method to distinguish recent infection from pre-existing immunity in exposed populations.

9.
J Cell Sci ; 133(4)2020 02 21.
Article in English | MEDLINE | ID: mdl-31974111

ABSTRACT

The centrosome linker serves to hold the duplicated centrosomes together until they separate in late G2/early mitosis. Precisely how the linker is assembled remains an open question. In this study, we identify Cep44 as a novel component of the linker in human cells. Cep44 localizes to the proximal end of centrioles, including mother and daughter centrioles, and its ablation leads to loss of centrosome cohesion. Cep44 does not impinge on the stability of C-Nap1 (also known as CEP250), LRRC45 or Cep215 (also known as CDK5RAP2), and vice versa, and these proteins are independently recruited to the centrosome. Rather, Cep44 associates with rootletin and regulates its stability and localization to the centrosome. Our findings reveal a role of the previously uncharacterized protein Cep44 for centrosome cohesion and linker assembly.


Subject(s)
Centrosome , Cytoskeletal Proteins , Autoantigens , Cell Cycle Proteins/genetics , Centrioles , Cytoskeletal Proteins/genetics , Humans , Mitosis , Nerve Tissue Proteins
10.
Rep Biochem Mol Biol ; 9(3): 366-372, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33649731

ABSTRACT

BACKGROUND: Myocardial infarction is one of the leading causes of morbidity and mortality worldwide. Oxidative stress plays a vital role in the pathogenesis of atherosclerosis leading to myocardial infarction and Glutathione S-transferases (GSTs) act as detoxifying enzymes to reduce oxidative stress. The aim of the present study was to investigate the associations of the GST (T1 & M1) gene polymorphism with the susceptibility of myocardial infarction in the Bangladeshi population. METHODS: A case-control study on 100 cardiac patients with MI and 150 control subjects was conducted. The genotyping of GST (T1 & M1) gene was done using conventional Polymerase Chain Reaction. RESULTS: The percentage of GSTM1 genotypes was significantly (p< 0.01) lower in patients compared to control subjects while the GSTT1 genotypes were not significantly different between the study subjects. The individual with GSTM1 null allele was at 2.5-fold increased risk {odds ratio (OR)= 2.5; 95 % confidence interval (95 % CI)= 1.4 to 4.3; p< 0.01} of experiencing MI while individual with either GSTM1 or GSTT1 genotypes was at lower risk. In the case of GST M1 and GST T1 combined genotype, patients having both null genotypes for GST M1 and GST T1 gene showed significantly (p< 0.01) higher risk of experiencing MI when compared to control subjects (OR= 3.5; 95% CI= 1.7-7.2; p< 0.001). CONCLUSION: Thus our recent study suggested that GSTM1 alone and GSTM1 and T1 in combination augments the risk of MI in Bangladeshi population.

11.
Cell Mol Life Sci ; 77(1): 195-212, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31177295

ABSTRACT

During ciliogenesis, the mother centriole transforms into a basal body competent to nucleate a cilium. The mother centriole and basal body possess sub-distal appendages (SDAs) and basal feet (BF), respectively. SDAs and BF are thought to be equivalent structures. In contrast to SDA assembly, little is known about the players involved in BF assembly and its assembly order. Furthermore, the contribution of BF to ciliogenesis is not understood. Here, we found that SDAs are distinguishable from BF and that the protein NPHP5 is a novel SDA and BF component. Remarkably, NPHP5 is specifically required for BF assembly in cells able to form basal bodies but is dispensable for SDA assembly. Determination of the hierarchical assembly reveals that NPHP5 cooperates with a subset of SDA/BF proteins to organize BF. The assembly pathway of BF is similar but not identical to that of SDA. Loss of NPHP5 or a BF protein simultaneously inhibits BF assembly and primary ciliogenesis, and these phenotypes could be rescued by manipulating the expression of certain components in the BF assembly pathway. These findings define a novel role for NPHP5 in specifically regulating BF assembly, a process which is tightly coupled to primary ciliogenesis.


Subject(s)
Basal Bodies/metabolism , Calmodulin-Binding Proteins/metabolism , Cilia/metabolism , Basal Bodies/ultrastructure , Cell Line , Centrioles/metabolism , Centrioles/ultrastructure , Cilia/ultrastructure , Humans , Protein Interaction Maps
12.
Cell Rep ; 28(12): 3077-3091.e5, 2019 09 17.
Article in English | MEDLINE | ID: mdl-31533032

ABSTRACT

MAIT cells are an unconventional T cell population that can be activated through both TCR-dependent and TCR-independent mechanisms. Here, we examined the impact of combinations of TCR-dependent and TCR-independent signals in human CD8+ MAIT cells. TCR-independent activation of these MAIT cells from blood and gut was maximized by extending the panel of cytokines to include TNF-superfamily member TL1A. RNA-seq experiments revealed that TCR-dependent and TCR-independent signals drive MAIT cells to exert overlapping and specific effector functions, affecting both host defense and tissue homeostasis. Although TCR triggering alone is insufficient to drive sustained activation, TCR-triggered MAIT cells showed specific enrichment of tissue-repair functions at the gene and protein levels and in in vitro assays. Altogether, these data indicate the blend of TCR-dependent and TCR-independent signaling to CD8+ MAIT cells may play a role in controlling the balance between healthy and pathological processes of tissue inflammation and repair.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Lymphocyte Activation , Mucosal-Associated Invariant T Cells/immunology , Receptors, Antigen, T-Cell/immunology , Signal Transduction/immunology , Aged , Aged, 80 and over , CD8-Positive T-Lymphocytes/pathology , Caco-2 Cells , Cytokines/immunology , Female , Humans , Inflammation/immunology , Inflammation/pathology , Male , Middle Aged , Mucosal-Associated Invariant T Cells/pathology , THP-1 Cells
13.
Results Probl Cell Differ ; 67: 17-25, 2019.
Article in English | MEDLINE | ID: mdl-31435790

ABSTRACT

Acetylation is among the most prevalent posttranslational modifications in cells and regulates a number of physiological processes such as gene transcription, cell metabolism, and cell signaling. Although initially discovered on nuclear histones, many non-nuclear proteins have subsequently been found to be acetylated as well. The centrosome is the major microtubule-organizing center in most metazoans. Recent proteomic data indicate that a number of proteins in this subcellular compartment are acetylated. This review gives an overview of our current knowledge on protein acetylation at the centrosome and its functional relevance in organelle biology.


Subject(s)
Centrosome/metabolism , Protein Processing, Post-Translational , Proteins/metabolism , Acetylation , Animals , Histones/metabolism , Humans , Proteomics
14.
Semin Cell Dev Biol ; 93: 145-152, 2019 09.
Article in English | MEDLINE | ID: mdl-30213760

ABSTRACT

The primary cilium is a cellular antenna found on the surface of many eukaryotic cells, whose main role is to sense and transduce signals that regulate growth, development, and differentiation. Although once believed to be a vestigial organelle without important function, it has become clear that defects in primary cilium are responsible for a wide variety of genetic diseases affecting many organs and tissues, including the brain, eyes, heart, kidneys, liver, and pancreas. The primary cilium is mainly present in quiescent and differentiated cells, and controls must exist to ensure that this organelle is assembled or disassembled at the right time. Although many protein components required for building the cilium have been identified, mechanistic details of how these proteins are spatially and temporally regulated and how these regulations are connected to external cues are beginning to emerge. This review article highlights the role of ubiquitination and in particular, E3 ubiquitin ligases and deubiquitinases, in the control of primary cilia assembly and disassembly.


Subject(s)
Cilia/metabolism , Ubiquitination , Animals , Deubiquitinating Enzymes/metabolism , Humans , Ubiquitin-Protein Ligases/metabolism
15.
J Biol Chem ; 293(24): 9448-9460, 2018 06 15.
Article in English | MEDLINE | ID: mdl-29724823

ABSTRACT

Viruses exploit the host cell machinery for their own profit. To evade innate immune sensing and promote viral replication, HIV type 1 (HIV-1) subverts DNA repair regulatory proteins and induces G2/M arrest. The preintegration complex of HIV-1 is known to traffic along microtubules and accumulate near the microtubule-organizing center. The centrosome is the major microtubule-organizing center in most eukaryotic cells, but precisely how HIV-1 impinges on centrosome biology remains poorly understood. We report here that the HIV-1 accessory protein viral protein R (Vpr) localized to the centrosome through binding to DCAF1, forming a complex with the ubiquitin ligase EDD-DYRK2-DDB1DCAF1 and Cep78, a resident centrosomal protein previously shown to inhibit EDD-DYRK2-DDB1DCAF1 Vpr did not affect ubiquitination of Cep78. Rather, it enhanced ubiquitination of an EDD-DYRK2-DDB1DCAF1 substrate, CP110, leading to its degradation, an effect that could be overcome by Cep78 expression. The down-regulation of CP110 and elongation of centrioles provoked by Vpr were independent of G2/M arrest. Infection of T lymphocytes with HIV-1, but not with HIV-1 lacking Vpr, promoted CP110 degradation and centriole elongation. Elongated centrioles recruited more γ-tubulin to the centrosome, resulting in increased microtubule nucleation. Our results suggest that Vpr is targeted to the centrosome where it hijacks a ubiquitin ligase, disrupting organelle homeostasis, which may contribute to HIV-1 pathogenesis.


Subject(s)
Carrier Proteins/metabolism , DNA-Binding Proteins/metabolism , HIV Infections/metabolism , HIV-1/physiology , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/metabolism , Ubiquitin-Protein Ligases/metabolism , vpr Gene Products, Human Immunodeficiency Virus/metabolism , Cell Cycle Checkpoints , Cell Cycle Proteins/metabolism , Centrosome/metabolism , Centrosome/pathology , Centrosome/virology , HEK293 Cells , HIV Infections/pathology , HIV Infections/virology , HeLa Cells , Homeostasis , Host-Pathogen Interactions , Humans , Microtubule-Associated Proteins/metabolism , Phosphoproteins/metabolism , Proteolysis , Dyrk Kinases
16.
EMBO Rep ; 18(4): 632-644, 2017 04.
Article in English | MEDLINE | ID: mdl-28242748

ABSTRACT

The centrosome plays a critical role in various cellular processes including cell division and cilia formation, and deregulation of centrosome homeostasis is a hallmark feature of many human diseases. Here, we show that centrosomal protein of 78 kDa (Cep78) localizes to mature centrioles and directly interacts with viral protein R binding protein (VprBP). Although VprBP is a component of two distinct E3 ubiquitin ligases, EDD-DYRK2-DDB1VprBP and CRL4VprBP, Cep78 binds specifically to EDD-DYRK2-DDB1VprBP and inhibits its activity. A pool of EDD-DYRK2-DDB1VprBP is active at the centrosome and mediates ubiquitination of CP110, a novel centrosomal substrate. Deregulation of Cep78 or EDD-DYRK2-DDB1VprBP perturbs CP110 ubiquitination and protein stability, thereby affecting centriole length and cilia assembly. Mechanistically, ubiquitination of CP110 entails its phosphorylation by DYRK2 and binding to VprBP Cep78 specifically impedes the transfer of ubiquitin from EDD to CP110 without affecting CP110 phosphorylation and binding to VprBP Thus, we identify Cep78 as a new player that regulates centrosome homeostasis by inhibiting the final step of the enzymatic reaction catalyzed by EDD-DYRK2-DDB1VprBP.


Subject(s)
Carrier Proteins/metabolism , Cell Cycle Proteins/metabolism , Centrosome/physiology , Homeostasis , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/metabolism , Ubiquitin-Protein Ligases/metabolism , Cell Cycle/genetics , Cell Cycle Proteins/genetics , Centrioles/metabolism , DNA-Binding Proteins/metabolism , Gene Expression , Humans , Protein Binding , Ubiquitination , Dyrk Kinases
17.
Glycobiology ; 26(2): 166-80, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26405105

ABSTRACT

Statins, which specifically inhibit HMG Co-A reductase, the rate-limiting step of cholesterol biosynthesis, are widely prescribed to reduce serum cholesterol and cardiac risk, but many other effects are seen. We now show an effect of these drugs to induce profound changes in the step-wise synthesis of glycosphingolipids (GSLs) in the Golgi. Glucosylceramide (GlcCer) was increased several-fold in all cell lines tested, demonstrating a widespread effect. Additionally, de novo or elevated lactotriaosylceramide (Lc3Cer; GlcNAcß1-3Galß1-4GlcCer) synthesis was observed in 70%. Western blot showed that GlcCer synthase (GCS) was elevated by statins, and GCS and Lc3Cer synthase (Lc3S) activities were increased; however, transcript was elevated for Lc3S only. Supplementation with the isoprenoid precursor, geranylgeranyl pyrophosphate (GGPP), a downstream product of HMG Co-A reductase, reversed statin-induced glycosyltransferase and GSL elevation. The Rab geranylgeranyl transferase inhibitor 3-PEHPC, but not specific inhibitors of farnesyl transferase, or geranylgeranyl transferase I, was sufficient to replicate statin-induced GlcCer and Lc3Cer synthesis, supporting a Rab prenylation-dependent mechanism. While total cholesterol was unaffected, the trans-Golgi network (TGN) cholesterol pool was dissipated and medial Golgi GCS partially relocated by statins. GSL-dependent vesicular retrograde transport of Verotoxin and cholera toxin to the Golgi/endoplasmic reticulum were blocked after statin or 3-PEHPC treatment, suggesting aberrant, prenylation-dependent vesicular traffic as a basis of glycosyltransferase increase and GSL remodeling. These in vitro studies indicate a previously unreported link between Rab prenylation and regulation of GCS activity and GlcCer metabolism.


Subject(s)
Anticholesteremic Agents/pharmacology , Ceramides/metabolism , Protein Prenylation/drug effects , rab GTP-Binding Proteins/metabolism , Geranyltranstransferase/metabolism , Golgi Apparatus/drug effects , Golgi Apparatus/metabolism , Humans , Jurkat Cells , MCF-7 Cells , Protein Transport
18.
Hum Mol Genet ; 24(8): 2185-200, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25552655

ABSTRACT

Proper functioning of cilia, hair-like structures responsible for sensation and locomotion, requires nephrocystin-5 (NPHP5) and a multi-subunit complex called the Bardet-Biedl syndrome (BBS)ome, but their precise relationship is not understood. The BBSome is involved in the trafficking of membrane cargos to cilia. While it is known that a loss of any single subunit prevents ciliary trafficking of the BBSome and its cargos, the mechanisms underlying ciliary entry of this complex are not well characterized. Here, we report that a transition zone protein NPHP5 contains two separate BBS-binding sites and interacts with the BBSome to mediate its integrity. Depletion of NPHP5, or expression of NPHP5 mutant missing one binding site, specifically leads to dissociation of BBS2 and BBS5 from the BBSome and loss of ciliary BBS2 and BBS5 without compromising the ability of the other subunits to traffic into cilia. Depletion of Cep290, another transition zone protein that directly binds to NPHP5, causes additional dissociation of BBS8 and loss of ciliary BBS8. Furthermore, delivery of BBSome cargos, smoothened, VPAC2 and Rab8a, to the ciliary compartment is completely disabled in the absence of single BBS subunits, but is selectively impaired in the absence of NPHP5 or Cep290. These findings define a new role of NPHP5 and Cep290 in controlling integrity and ciliary trafficking of the BBSome, which in turn impinge on the delivery of ciliary cargo.


Subject(s)
Antigens, Neoplasm/metabolism , Bardet-Biedl Syndrome/metabolism , Calmodulin-Binding Proteins/metabolism , Cilia/metabolism , Multiprotein Complexes/metabolism , Neoplasm Proteins/metabolism , Antigens, Neoplasm/genetics , Bardet-Biedl Syndrome/genetics , Calmodulin-Binding Proteins/genetics , Cell Cycle Proteins , Cilia/genetics , Cytoskeletal Proteins , Humans , Multiprotein Complexes/genetics , Neoplasm Proteins/genetics , Protein Transport
SELECTION OF CITATIONS
SEARCH DETAIL
...