Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Asian J Plant Sci ; 12(1): 11-20, 2013.
Article in English | MEDLINE | ID: mdl-30271428

ABSTRACT

Essential minerals are considered as key determinants of optimum health and nutritive quality of common bean seed. This study aimed to identify genetically stable essential minerals in common bean. Eleven diverse common bean genotypes were grown in three distinct growing environments and 17 essential minerals were analyzed by Inductively Coupled Plasma-Optical Emission Spectroscopy. Genetic control of mineral composition in common bean seed was demonstrated by large (p<0.01) genotypic differences in Ca and Sr contents and moderate genotypic difference was observed in Fe content. Significant influence of genotype and environments (G×E) interaction was observed in the content of all minerals. The ratios between genetic and environmental variances and between genetic and G×E variances indicated the greater influence and stability of genetic factor on the concentration of Ca and Sr in common bean seed. Significant positive correlations among important minerals such as Zn with S, P, Fe and Na and Cu with K, Mg, Ni, P were identified. The stability of genetic effects on Ca and Sr concentration in common bean has been identified in this study. Calcium is one of the most important minerals which regulates many cellular processes and has important structural roles in living organisms. Further studies to characterize Ca physiology in common bean may identify genetic or biochemical markers to expedite breeding common bean with enhanced Ca concentration.

2.
Can J Plant Sci ; 90(1): 49-60, 2010.
Article in English | MEDLINE | ID: mdl-29875504

ABSTRACT

Common bean (Phaseolus vulgaris L.) is an important source of dietary protein and minerals worldwide. Genes conditioning variability for mineral contents are not clearly understood. Our ultimate goal is to identify genes conditioning genetic variation for Zn and Fe content. To establish mapping populations for this objective, we tested mineral content of 29 common bean genotypes. Chemical analyses revealed significant genetic variability for seed Zn and Fe contents among the genotypes. Genetic diversity was evaluated with 49 primer pairs, of which 23 were simple sequence repeats (SSR), 16 were developed from tentative consensus (TC) sequences, and 10 were generated from common bean NBS-LRR gene sequences. The discriminatory ability of molecular markers for identifying allelic variation among genotypes was estimated by polymorphism information content (PIC) and the genetic diversity was measured from genetic similarities between genotypes. Primers developed from NBS-LRR gene sequences were highly polymorphic in both PIC values and number of alleles (0.82 and 5.3), followed by SSRs (0.56 and 3.0), and markers developed from TC (0.39 and 2.0). genetic similarity values between genotypes ranged from 14.0 (JaloEEP558 and DOR364) to 91.4 (MIB152 and MIB465). Cluster analysis clearly discriminated the genotypes into Mesoamerican and Andean gene pools. Common bean genotypes were selected to include in crossing to enhance seed Zn and Fe content based on genetic diversity and seed mineral contents of the genotypes.

3.
Genetics ; 168(2): 585-93, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15514037

ABSTRACT

This report describes the rationale, approaches, organization, and resource development leading to a large-scale deletion bin map of the hexaploid (2n = 6x = 42) wheat genome (Triticum aestivum L.). Accompanying reports in this issue detail results from chromosome bin-mapping of expressed sequence tags (ESTs) representing genes onto the seven homoeologous chromosome groups and a global analysis of the entire mapped wheat EST data set. Among the resources developed were the first extensive public wheat EST collection (113,220 ESTs). Described are protocols for sequencing, sequence processing, EST nomenclature, and the assembly of ESTs into contigs. These contigs plus singletons (unassembled ESTs) were used for selection of distinct sequence motif unigenes. Selected ESTs were rearrayed, validated by 5' and 3' sequencing, and amplified for probing a series of wheat aneuploid and deletion stocks. Images and data for all Southern hybridizations were deposited in databases and were used by the coordinators for each of the seven homoeologous chromosome groups to validate the mapping results. Results from this project have established the foundation for future developments in wheat genomics.


Subject(s)
Chromosome Mapping , Computational Biology , Contig Mapping , Expressed Sequence Tags/chemistry , Gene Deletion , Triticum/genetics , Blotting, Southern , DNA Probes , Gene Library
4.
Genetics ; 168(2): 609-23, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15514039

ABSTRACT

A total of 944 expressed sequence tags (ESTs) generated 2212 EST loci mapped to homoeologous group 1 chromosomes in hexaploid wheat (Triticum aestivum L.). EST deletion maps and the consensus map of group 1 chromosomes were constructed to show EST distribution. EST loci were unevenly distributed among chromosomes 1A, 1B, and 1D with 660, 826, and 726, respectively. The number of EST loci was greater on the long arms than on the short arms for all three chromosomes. The distribution of ESTs along chromosome arms was nonrandom with EST clusters occurring in the distal regions of short arms and middle regions of long arms. Duplications of group 1 ESTs in other homoeologous groups occurred at a rate of 35.5%. Seventy-five percent of wheat chromosome 1 ESTs had significant matches with rice sequences (E < or = e(-10)), where large regions of conservation occurred between wheat consensus chromosome 1 and rice chromosome 5 and between the proximal portion of the long arm of wheat consensus chromosome 1 and rice chromosome 10. Only 9.5% of group 1 ESTs showed significant matches to Arabidopsis genome sequences. The results presented are useful for gene mapping and evolutionary and comparative genomics of grasses.


Subject(s)
Arabidopsis/genetics , Chromosome Mapping , Chromosomes, Plant/genetics , Expressed Sequence Tags , Oryza/genetics , Ploidies , Triticum/genetics , Genes, Plant , Genome, Plant , Sequence Alignment
5.
Genetics ; 168(2): 639-50, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15514041

ABSTRACT

The focus of this study was to analyze the content, distribution, and comparative genome relationships of 996 chromosome bin-mapped expressed sequence tags (ESTs) accounting for 2266 restriction fragments (loci) on the homoeologous group 3 chromosomes of hexaploid wheat (Triticum aestivum L.). Of these loci, 634, 884, and 748 were mapped on chromosomes 3A, 3B, and 3D, respectively. The individual chromosome bin maps revealed bins with a high density of mapped ESTs in the distal region and bins of low density in the proximal region of the chromosome arms, with the exception of 3DS and 3DL. These distributions were more localized on the higher-resolution group 3 consensus map with intermediate regions of high-mapped-EST density on both chromosome arms. Gene ontology (GO) classification of mapped ESTs was not significantly different for homoeologous group 3 chromosomes compared to the other groups. A combined analysis of the individual bin maps using 537 of the mapped ESTs revealed rearrangements between the group 3 chromosomes. Approximately 232 (44%) of the consensus mapped ESTs matched sequences on rice chromosome 1 and revealed large- and small-scale differences in gene order. Of the group 3 mapped EST unigenes approximately 21 and 32% matched the Arabidopsis coding regions and proteins, respectively, but no chromosome-level gene order conservation was detected.


Subject(s)
Chromosome Mapping , Chromosomes, Plant/genetics , Genes, Plant , Oryza/genetics , Triticum/genetics , Genome, Plant , Sequence Alignment
6.
Genetics ; 168(2): 625-37, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15514040

ABSTRACT

The complex hexaploid wheat genome offers many challenges for genomics research. Expressed sequence tags facilitate the analysis of gene-coding regions and provide a rich source of molecular markers for mapping and comparison with model organisms. The objectives of this study were to construct a high-density EST chromosome bin map of wheat homoeologous group 2 chromosomes to determine the distribution of ESTs, construct a consensus map of group 2 ESTs, investigate synteny, examine patterns of duplication, and assess the colinearity with rice of ESTs assigned to the group 2 consensus bin map. A total of 2600 loci generated from 1110 ESTs were mapped to group 2 chromosomes by Southern hybridization onto wheat aneuploid chromosome and deletion stocks. A consensus map was constructed of 552 ESTs mapping to more than one group 2 chromosome. Regions of high gene density in distal bins and low gene density in proximal bins were found. Two interstitial gene-rich islands flanked by relatively gene-poor regions on both the short and long arms and having good synteny with rice were discovered. The map locations of two ESTs indicated the possible presence of a small pericentric inversion on chromosome 2B. Wheat chromosome group 2 was shown to share syntenous blocks with rice chromosomes 4 and 7.


Subject(s)
Chromosome Mapping , Chromosomes, Plant/genetics , Genes, Plant , Oryza/genetics , Triticum/genetics , Genome, Plant , Ploidies , Sequence Alignment
7.
Genetics ; 168(2): 651-63, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15514042

ABSTRACT

A total of 1918 loci, detected by the hybridization of 938 expressed sequence tag unigenes (ESTs) from 26 Triticeae cDNA libraries, were mapped to wheat (Triticum aestivum L.) homoeologous group 4 chromosomes using a set of deletion, ditelosomic, and nulli-tetrasomic lines. The 1918 EST loci were not distributed uniformly among the three group 4 chromosomes; 41, 28, and 31% mapped to chromosomes 4A, 4B, and 4D, respectively. This pattern is in contrast to the cumulative results of EST mapping in all homoeologous groups, as reported elsewhere, that found the highest proportion of loci mapped to the B genome. Sixty-five percent of these 1918 loci mapped to the long arms of homoeologous group 4 chromosomes, while 35% mapped to the short arms. The distal regions of chromosome arms showed higher numbers of loci than the proximal regions, with the exception of 4DL. This study confirmed the complex structure of chromosome 4A that contains two reciprocal translocations and two inversions, previously identified. An additional inversion in the centromeric region of 4A was revealed. A consensus map for homoeologous group 4 was developed from 119 ESTs unique to group 4. Forty-nine percent of these ESTs were found to be homoeologous to sequences on rice chromosome 3, 12% had matches with sequences on other rice chromosomes, and 39% had no matches with rice sequences at all. Limited homology (only 26 of the 119 consensus ESTs) was found between wheat ESTs on homoeologous group 4 and the Arabidopsis genome. Forty-two percent of the homoeologous group 4 ESTs could be classified into functional categories on the basis of blastX searches against all protein databases.


Subject(s)
Chromosome Mapping , Chromosomes, Plant/genetics , Expressed Sequence Tags , Genes, Plant , Triticum/genetics , Gene Deletion , Gene Duplication , Gene Library , Genome, Plant
8.
Genetics ; 168(2): 677-86, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15514044

ABSTRACT

To localize wheat (Triticum aestivum L.) ESTs on chromosomes, 882 homoeologous group 6-specific ESTs were identified by physically mapping 7965 singletons from 37 cDNA libraries on 146 chromosome, arm, and sub-arm aneuploid and deletion stocks. The 882 ESTs were physically mapped to 25 regions (bins) flanked by 23 deletion breakpoints. Of the 5154 restriction fragments detected by 882 ESTs, 2043 (loci) were localized to group 6 chromosomes and 806 were mapped on other chromosome groups. The number of loci mapped was greatest on chromosome 6B and least on 6D. The 264 ESTs that detected orthologous loci on all three homoeologs using one restriction enzyme were used to construct a consensus physical map. The physical distribution of ESTs was uneven on chromosomes with a tendency toward higher densities in the distal halves of chromosome arms. About 43% of the wheat group 6 ESTs identified rice homologs upon comparisons of genome sequences. Fifty-eight percent of these ESTs were present on rice chromosome 2 and the remaining were on other rice chromosomes. Even within the group 6 bins, rice chromosomal blocks identified by 1-6 wheat ESTs were homologous to up to 11 rice chromosomes. These rice-block contigs were used to resolve the order of wheat ESTs within each bin.


Subject(s)
Chromosome Mapping , Chromosomes, Plant/genetics , Gene Deletion , Genes, Plant , Triticum/genetics , Expressed Sequence Tags , Gene Library , Genome, Plant , Sequence Alignment
9.
Genetics ; 168(2): 665-76, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15514043

ABSTRACT

We constructed high-density deletion bin maps of wheat chromosomes 5A, 5B, and 5D, including 2338 loci mapped with 1052 EST probes and 217 previously mapped loci (total 2555 loci). This information was combined to construct a consensus chromosome bin map of group 5 including 24 bins. A relatively higher number of loci were mapped on chromosome 5B (38%) compared to 5A (34%) and 5D (28%). Differences in the levels of polymorphism among the three chromosomes were partially responsible for these differences. A higher number of duplicated loci was found on chromosome 5B (42%). Three times more loci were mapped on the long arms than on the short arms, and a significantly higher number of probes, loci, and duplicated loci were mapped on the distal halves than on the proximal halves of the chromosome arms. Good overall colinearity was observed among the three homoeologous group 5 chromosomes, except for the previously known 5AL/4AL translocation and a putative small pericentric inversion in chromosome 5A. Statistically significant colinearity was observed between low-copy-number ESTs from wheat homoeologous group 5 and rice chromosomes 12 (88 ESTs), 9 (72 ESTs), and 3 (84 ESTs).


Subject(s)
Chromosome Mapping , Chromosomes, Plant/genetics , Genes, Plant , Oryza/genetics , Triticum/genetics , Expressed Sequence Tags , Genome, Plant , Sequence Alignment
10.
Genetics ; 168(2): 687-99, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15514045

ABSTRACT

The objectives of this study were to develop a high-density chromosome bin map of homoeologous group 7 in hexaploid wheat (Triticum aestivum L.), to identify gene distribution in these chromosomes, and to perform comparative studies of wheat with rice and barley. We mapped 2148 loci from 919 EST clones onto group 7 chromosomes of wheat. In the majority of cases the numbers of loci were significantly lower in the centromeric regions and tended to increase in the distal regions. The level of duplicated loci in this group was 24% with most of these loci being localized toward the distal regions. One hundred nineteen EST probes that hybridized to three fragments and mapped to the three group 7 chromosomes were designated landmark probes and were used to construct a consensus homoeologous group 7 map. An additional 49 probes that mapped to 7AS, 7DS, and the ancestral translocated segment involving 7BS also were designated landmarks. Landmark probe orders and comparative maps of wheat, rice, and barley were produced on the basis of corresponding rice BAC/PAC and genetic markers that mapped on chromosomes 6 and 8 of rice. Identification of landmark ESTs and development of consensus maps may provide a framework of conserved coding regions predating the evolution of wheat genomes.


Subject(s)
Chromosome Mapping , Chromosomes, Plant/genetics , Expressed Sequence Tags , Genes, Plant , Triticum/genetics , Gene Deletion , Gene Duplication , Genetic Markers , Genome, Plant , Hordeum/genetics , Oryza/genetics , Sequence Alignment
11.
Genetics ; 168(2): 701-12, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15514046

ABSTRACT

Because of the huge size of the common wheat (Triticum aestivum L., 2n = 6x = 42, AABBDD) genome of 17,300 Mb, sequencing and mapping of the expressed portion is a logical first step for gene discovery. Here we report mapping of 7104 expressed sequence tag (EST) unigenes by Southern hybridization into a chromosome bin map using a set of wheat aneuploids and deletion stocks. Each EST detected a mean of 4.8 restriction fragments and 2.8 loci. More loci were mapped in the B genome (5774) than in the A (5173) or D (5146) genomes. The EST density was significantly higher for the D genome than for the A or B. In general, EST density increased relative to the physical distance from the centromere. The majority of EST-dense regions are in the distal parts of chromosomes. Most of the agronomically important genes are located in EST-dense regions. The chromosome bin map of ESTs is a unique resource for SNP analysis, comparative mapping, structural and functional analysis, and polyploid evolution, as well as providing a framework for constructing a sequence-ready, BAC-contig map of the wheat genome.


Subject(s)
Chromosome Mapping , Chromosomes, Plant/genetics , Expressed Sequence Tags , Genes, Plant , Genome, Plant , Triticum/genetics , Genetic Markers , Ploidies , Quantitative Trait Loci , Sequence Alignment
12.
DNA Res ; 7(2): 103-10, 2000 Apr 28.
Article in English | MEDLINE | ID: mdl-10819325

ABSTRACT

Three small insert (300 to approximately 600 bp) sheared genomic libraries were constructed by pipetting and DNase I treatment of soybean DNA. About 15,000 clones from each library were screened for CT- simple sequence repeats (CT-SSRs). The CT-SSRs were abundant in the soybean genome at an estimated frequency of approximately one SSR per 110 kb of genomic DNA. Following the sequencing of 129 positive clones, the repeat types and frequency of CT repeats among the positive clones were characterized. Forty-nine primer pairs were designed and preliminarily evaluated for their ability to amplify genomic DNA from a set of six varieties, including parents of a mapping family. Amplified products were analyzed by 10% PAGE. Eighty-eight percent of the designed primers were able to amplify all these genomic DNAs using a single PCR profile of 53 degrees C annealing temperature, of which 22 (45%) were polymorphic in the six varieties, and 14 of them were polymorphic in the parents of the mapping family. The polymorphic primer sets were further assessed for allelic information using DNA from 16 soybean cultivars. The average number of alleles was 4, ranging from 2 to 7 with the highest polymorphism information content value 0.84. Fourteen of these SSRs were mapped, using an existing soybean RFLP map. The findings presented here will advance our understanding of the soybean genome, and assist in the mapping genome and discrimination of closely related varieties of this species.


Subject(s)
Dinucleotide Repeats , Genome, Plant , Glycine max/genetics , Chromosome Mapping , DNA Primers , Electrophoresis, Polyacrylamide Gel , Genomic Library , Polymerase Chain Reaction , Polymorphism, Restriction Fragment Length
SELECTION OF CITATIONS
SEARCH DETAIL
...