Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Colloids Surf B Biointerfaces ; 62(1): 42-50, 2008 Mar 15.
Article in English | MEDLINE | ID: mdl-17961995

ABSTRACT

Pore-expanded MCM-41 (PE-MCM-41) silica exhibits a unique combination of high specific surface area (ca. 1000 m(2)/g), pore size (up to 25 nm) and pore volume (up to 3.5 cm(3)/g). As such, this material is highly suitable for the adsorption of large biomolecules. The current study focused primarily on the application of PE-MCM-41 material as suitable host for urease (nickel-based large metalloenzyme) in controlled hydrolysis of urea. Urease adsorbed on PE-MCM-41, regular MCM-41 and silica gel (SGA) were used as catalysts for urea hydrolysis reaction. Adsorption studies of urease on these materials from aqueous solution at pH 7.2 revealed that the adsorption capacity of PE-MCM-41 (102 mg/g) is significantly higher than that of MCM-41 (56 mg/g) and SGA (21 mg/g). The equilibrium adsorption data were well fitted using the Langmuir-Freundlich model. Furthermore, the kinetic study revealed that the uptake of urease follow the pseudo-first order kinetics. The in vitro urea hydrolysis reaction on pristine urease and different urease-loaded catalysts showed that the rate of hydrolysis reaction is significantly slower on U/PE-MCM-41 compared to that of bulk urease and urease on MCM-41 and SGA. This technique could be an alternative means to the use of urease inhibitors to control the ammonia release from urea fertilizer.


Subject(s)
Silicon Dioxide/chemistry , Urea/metabolism , Urease/metabolism , Adsorption , Catalysis , Enzyme Stability , Enzymes, Immobilized/metabolism , Hydrogen-Ion Concentration , Kinetics , Urease/chemistry
2.
J Nanosci Nanotechnol ; 7(3): 828-32, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17450841

ABSTRACT

In this paper, adsorption of lysozyme onto two kinds of mesoporous adsorbents (KIT-5 and AISBA-15) has been investigated and the results on the effects of pore geometry and stability of the adsorbents are also discussed. The KIT-5 mesoporous silica materials possess cage-type pore geometry while the AISBA-15 adsorbent has mesopores of cylindrical type with rather large diameter (9.7 nm). Adsorption of lysozyme onto AISBA-15 aluminosilicate obeys a Langmuir isotherm, resulting in pore occupation of 25 to 30%. In contrast, the KIT-5 adsorbents showed very small adsorption capacities for the lysozyme adsorption, typically falling in 6 to 13% of pore occupation. The cage-type KIT-5 adsorbents have narrow channel (4 to 6 nm) where penetration of the lysozyme (3 x 3 x 4.5 nm) might be restricted. The KIT-5 adsorbent tends to collapse after long-time immersion in water, as indicated by XRD patterns, while the AISBA-15 adsorbent retains its regular structure even after immersion in basic water for 4 days. These facts confirm superiority of the AISBA-15 as an adsorbent as compared with the KIT-5 mesoporous silicates. This research strikingly demonstrates the selection of mesoporous materials is crucial to achieve efficient immobilization of biomaterials in aqueous environment.


Subject(s)
Muramidase/chemistry , Adsorption , Aluminum Silicates/chemistry , Biocompatible Materials/chemistry , Enzymes, Immobilized , Nanoparticles , Nanotechnology , Silicon Dioxide/chemistry , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
3.
J Nanosci Nanotechnol ; 5(3): 347-71, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15913241

ABSTRACT

Mesoporous silica with regular geometries have been recently paid much attention owing to their scientific importance and great potentials in practical applications such as catalysis, adsorption, separation, sensing, medical usage, ecology, and nanotechnology. Especially, applications often require immobilization of the related functional groups in the mesopores. In order to achieve desire applications, modification of these mesoporous silica are indispensable. In this review, recent progresses of functionalization of mesoporous silica are comprehensively summarized. In the first parts, advances in three major methods, grafting (post-synthetic modification), co-condensation (direct synthesis), and techniques related with periodic mesoporous organosilicates, are explained. In the latter parts, new concepts for functionalization of mesoporous silica including functional template method and lizard template method are introduced. Most of the examples described here have been published in a new millennium.


Subject(s)
Coated Materials, Biocompatible/chemistry , Crystallization/methods , Crystallization/trends , Nanostructures/chemistry , Nanotechnology/methods , Nanotechnology/trends , Silicon Dioxide/chemistry , Nanostructures/analysis , Porosity
SELECTION OF CITATIONS
SEARCH DETAIL
...