Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
J Adv Res ; 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38417576

ABSTRACT

INTRODUCTION: In recent years, the proliferation of Industrial Internet of Things (IIoT) devices has resulted in a substantial increase in data generation across various domains, including the nascent 6G networks. Digital Twins (DTs), serving as virtual replicas of physical entities, have gained popularity within the realm of IoT due to their capacity to simulate and optimize physical systems in a cost-effective manner. Nonetheless, the security of DTs and the safeguarding of the sensitive data they generate have emerged as paramount concerns. Fortunately, the Federated Fearning (FL) system has emerged as a promising solution to address the challenge of data privacy within DTs. Nonetheless, the requisite acquisition of a significant volume of labeled data for training purposes poses a formidable challenge, particularly in a DT environment that blends real and virtual data. OBJECTIVES: To tackle this challenge, this study presents an innovative Semi-supervised FL (SSFL) framework designed to overcome the scarcity of labeled data through the strategic utilization of pseudo-labels. METHODS: Specifically, our proposed SSFL algorithm, named SSFL-MBE, introduces a novel approach by combining Mix data augmentation and Bayesian Estimation consistency regularization loss, thereby integrating robust augmentation techniques to enhance model generalization. Furthermore, we introduce a Bayesian-estimated pseudo-label loss that leverages prior probabilistic knowledge to enhance model performance. Our investigation focuses particularly on a demanding scenario where labeled and unlabeled data are segregated across disparate locations, specifically, the server and various clients. RESULTS: Comprehensive evaluations conducted on CIFAR-10 and MNIST datasets conclusively demonstrate that our proposed algorithm consistently surpasses mainstream SSFL baseline models, exhibiting an enhancement in model performance ranging from 0.5% to 1.5%. CONCLUSION: Overall, this work contributes to the development of more efficient and secure approaches for model training in DT-empowered FL settings, which is crucial for the deployment of IIoTs in 6G-enabled environments.

2.
Sensors (Basel) ; 23(12)2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37420558

ABSTRACT

Retinal optical coherence tomography (OCT) imaging is a valuable tool for assessing the condition of the back part of the eye. The condition has a great effect on the specificity of diagnosis, the monitoring of many physiological and pathological procedures, and the response and evaluation of therapeutic effectiveness in various fields of clinical practices, including primary eye diseases and systemic diseases such as diabetes. Therefore, precise diagnosis, classification, and automated image analysis models are crucial. In this paper, we propose an enhanced optical coherence tomography (EOCT) model to classify retinal OCT based on modified ResNet (50) and random forest algorithms, which are used in the proposed study's training strategy to enhance performance. The Adam optimizer is applied during the training process to increase the efficiency of the ResNet (50) model compared with the common pre-trained models, such as spatial separable convolutions and visual geometry group (VGG) (16). The experimentation results show that the sensitivity, specificity, precision, negative predictive value, false discovery rate, false negative rate accuracy, and Matthew's correlation coefficient are 0.9836, 0.9615, 0.9740, 0.9756, 0.0385, 0.0260, 0.0164, 0.9747, 0.9788, and 0.9474, respectively.


Subject(s)
Deep Learning , Neural Networks, Computer , Tomography, Optical Coherence/methods , Retina/diagnostic imaging , Predictive Value of Tests
3.
Sensors (Basel) ; 23(11)2023 May 25.
Article in English | MEDLINE | ID: mdl-37299782

ABSTRACT

The Internet of Things (IoT) uses wireless networks without infrastructure to install a huge number of wireless sensors that track system, physical, and environmental factors. There are a variety of WSN uses, and some well-known application factors include energy consumption and lifespan duration for routing purposes. The sensors have detecting, processing, and communication capabilities. In this paper, an intelligent healthcare system is proposed which consists of nano sensors that collect real-time health status and transfer it to the doctor's server. Time consumption and various attacks are major concerns, and some existing techniques contain stumbling blocks. Therefore, in this research, a genetic-based encryption method is advocated to protect data transmitted over a wireless channel using sensors to avoid an uncomfortable data transmission environment. An authentication procedure is also proposed for legitimate users to access the data channel. Results show that the proposed algorithm is lightweight and energy efficient, and time consumption is 90% lower with a higher security ratio.


Subject(s)
Internet of Things , Computer Security , Wireless Technology , Computer Communication Networks , Delivery of Health Care
4.
J Healthc Eng ; 2023: 4301745, 2023.
Article in English | MEDLINE | ID: mdl-36844950

ABSTRACT

The infectious coronavirus disease (COVID-19) has become a great threat to global human health. Timely and rapid detection of COVID-19 cases is very crucial to control its spreading through isolation measures as well as for proper treatment. Though the real-time reverse transcription-polymerase chain reaction (RT-PCR) test is a widely used technique for COVID-19 infection, recent researches suggest chest computed tomography (CT)-based screening as an effective substitute in cases of time and availability limitations of RT-PCR. In consequence, deep learning-based COVID-19 detection from chest CT images is gaining momentum. Furthermore, visual analysis of data has enhanced the opportunities of maximizing the prediction performance in this big data and deep learning realm. In this article, we have proposed two separate deformable deep networks converting from the conventional convolutional neural network (CNN) and the state-of-the-art ResNet-50, to detect COVID-19 cases from chest CT images. The impact of the deformable concept has been observed through performance comparative analysis among the designed deformable and normal models, and it is found that the deformable models show better prediction results than their normal form. Furthermore, the proposed deformable ResNet-50 model shows better performance than the proposed deformable CNN model. The gradient class activation mapping (Grad-CAM) technique has been used to visualize and check the targeted regions' localization effort at the final convolutional layer and has been found excellent. Total 2481 chest CT images have been used to evaluate the performance of the proposed models with a train-valid-test data splitting ratio of 80 : 10 : 10 in random fashion. The proposed deformable ResNet-50 model achieved training accuracy of 99.5% and test accuracy of 97.6% with specificity of 98.5% and sensitivity of 96.5% which are satisfactory compared with related works. The comprehensive discussion demonstrates that the proposed deformable ResNet-50 model-based COVID-19 detection technique can be useful for clinical applications.


Subject(s)
COVID-19 , Humans , COVID-19/diagnostic imaging , Tomography, X-Ray Computed , Big Data , Motion , Neural Networks, Computer
5.
Healthcare (Basel) ; 11(1)2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36611599

ABSTRACT

In recent years, the healthcare system, along with the technology that surrounds it, has become a sector in much need of development. It has already improved in a wide range of areas thanks to significant and continuous research into the practical implications of biomedical and telemedicine studies. To ensure the continuing technological improvement of hospitals, physicians now also must properly maintain and manage large volumes of patient data. Transferring large amounts of data such as images to IoT servers based on machine-to-machine communication is difficult and time consuming over MQTT and MLLP protocols, and since IoT brokers only handle a limited number of bytes of data, such protocols can only transfer patient information and other text data. It is more difficult to handle the monitoring of ultrasound, MRI, or CT image data via IoT. To address this problem, this study proposes a model in which the system displays images as well as patient data on an IoT dashboard. A Raspberry Pi processes HL7 messages received from medical devices like an ultrasound machine (ULSM) and extracts only the image data for transfer to an FTP server. The Raspberry Pi 3 (RSPI3) forwards the patient information along with a unique encrypted image data link from the FTP server to the IoT server. We have implemented an authentic and NS3-based simulation environment to monitor real-time ultrasound image data on the IoT server and have analyzed the system performance, which has been impressive. This method will enrich the telemedicine facilities both for patients and physicians by assisting with overall monitoring of data.

6.
Neural Comput Appl ; 35(19): 13907-13920, 2023.
Article in English | MEDLINE | ID: mdl-34127892

ABSTRACT

Major countries are globally facing difficult situations due to this pandemic disease, COVID-19. There are high chances of getting false positives and false negatives identifying the COVID-19 symptoms through existing medical practices such as PCR (polymerase chain reaction) and RT-PCR (reverse transcription-polymerase chain reaction). It might lead to a community spread of the disease. The alternative of these tests can be CT (Computer Tomography) imaging or X-rays of the lungs to identify the patient with COVID-19 symptoms more accurately. Furthermore, by using feasible and usable technology to automate the identification of COVID-19, the facilities can be improved. This notion became the basic framework, Res-CovNet, of the implemented methodology, a hybrid methodology to bring different platforms into a single platform. This basic framework is incorporated into IoMT based framework, a web-based service to identify and classify various forms of pneumonia or COVID-19 utilizing chest X-ray images. For the front end, the.NET framework along with C# language was utilized, MongoDB was utilized for the storage aspect, Res-CovNet was utilized for the processing aspect. Deep learning combined with the notion forms a comprehensive implementation of the framework, Res-CovNet, to classify the COVID-19 affected patients from pneumonia-affected patients as both lung imaging looks similar to the naked eye. The implemented framework, Res-CovNet, developed with the technique, transfer learning in which ResNet-50 used as a pre-trained model and then extended with classification layers. The work implemented using the data of X-ray images collected from the various trustable sources that include cases such as normal, bacterial pneumonia, viral pneumonia, and COVID-19, with the overall size of the data is about 5856. The accuracy of the model implemented is about 98.4% in identifying COVID-19 against the normal cases. The accuracy of the model is about 96.2% in the case of identifying COVID-19 against all other cases, as mentioned.

7.
Sensors (Basel) ; 22(16)2022 Aug 18.
Article in English | MEDLINE | ID: mdl-36015975

ABSTRACT

In the Internet of Things (IoT), the de facto Routing Protocol for Low Power and Lossy Networks (RPL) is susceptible to several disruptive attacks based on its functionalities and features. Among various RPL security solutions, a trust-based security is easy to adapt for resource-constrained IoT environments. In the existing trust-based security for RPL routing attacks, nodes' mobility is not considered or limited to only the sender nodes. Similarly, these trust-based protocols are not evaluated for mobile IoT environments, particularly regarding RPL attacks. Hence, a trust and mobility-based secure routing protocol is proposed, termed as SMTrust, by critically analysing the trust metrics involving the mobility-based metrics in IoT. SMTrust intends to provide security against RPL Rank and Blackhole attacks. The proposed protocol is evaluated in three different scenarios, including static and mobile nodes in an IoT network. SMTrust is compared with the default RPL objective function, Minimum Rank with Hysteresis Objective Function (MRHOF), SecTrust, DCTM, and MRTS. The evaluation results indicate that the proposed protocol outperforms with respect to packet loss rate, throughput, and topology stability. Moreover, SMTrust is validated using routing protocol requirements analysis to ensure that it fulfils the consistency, optimality, and loop-freeness.

9.
Multimed Syst ; 28(4): 1465-1479, 2022.
Article in English | MEDLINE | ID: mdl-35645465

ABSTRACT

The increase in chronic diseases has affected the countries' health system and economy. With the recent COVID-19 virus, humanity has experienced a great challenge, which has led to make efforts to detect it and prevent its spread. Hence, it is necessary to develop new solutions that are based on technology and low cost, to satisfy the citizens' needs. Deep learning techniques is a technological solution that has been used in healthcare lately. Nowadays, with the increase in chips processing capabilities, increase size of data, and the progress in deep learning research, healthcare applications have been proposed to provide citizens' health needs. In addition, a big amount of data is generated every day. Development in Internet of Things, gadgets, and phones has allowed the access to multimedia data. Data such as images, video, audio and text are used as input of applications based on deep learning methods to support healthcare system to diagnose, predict, or treat patients. This review pretends to give an overview of proposed healthcare solutions based on deep learning techniques using multimedia data. We show the use of deep learning in healthcare, explain the different types of multimedia data, show some relevant deep learning multimedia applications in healthcare, and highlight some challenges in this research area.

10.
IEEE Trans Netw Sci Eng ; 9(1): 308-318, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35582325

ABSTRACT

Network and cloud service providers are facing an unprecedented challenge to meet the demand of end-users during the COVID-19 pandemic. Currently, billions of people around the world are ordered to stay at home and use remote connection technologies to prevent the spread of the disease. The COVID-19 crisis brought a new reality to network service providers that will eventually accelerate the deployment of edge computing resources to attract the massive influx of users' traffic. The user can elect to procure its resource needs from any edge computing provider based on a variety of attributes such as price and quality. The main challenge for the user is how to choose between the price and multiple quality of service deals when such offerings are changing continually. This problem falls under multi-attribute decision-making. This paper investigates and proposes a novel auction mechanism by which network service brokers would be able to automate the selection of edge computing offers to support their end-users. We also propose a multi-attribute decision-making model that allows the broker to maximize its utility when several bids from edge-network providers are present. The evaluation and experimentation show the practicality and robustness of the proposed model.

11.
Neural Comput Appl ; 34(14): 11383-11394, 2022.
Article in English | MEDLINE | ID: mdl-33052172

ABSTRACT

Breast cancer is the most prevailing cancer in the world and each year affecting millions of women. It is also the cause of largest number of deaths in women dying in cancers. During the last few years, researchers are proposing different convolutional neural network models in order to facilitate diagnostic process of breast cancer. Convolutional neural networks are showing promising results to classify cancers using image datasets. There is still a lack of standard models which can claim the best model because of unavailability of large datasets that can be used for models' training and validation. Hence, researchers are now focusing on leveraging the transfer learning approach using pre-trained models as feature extractors that are trained over millions of different images. With this motivation, this paper considers eight different fine-tuned pre-trained models to observe how these models classify breast cancers applying on ultrasound images. We also propose a shallow custom convolutional neural network that outperforms the pre-trained models with respect to different performance metrics. The proposed model shows 100% accuracy and achieves 1.0 AUC score, whereas the best pre-trained model shows 92% accuracy and 0.972 AUC score. In order to avoid biasness, the model is trained using the fivefold cross validation technique. Moreover, the model is faster in training than the pre-trained models and requires a small number of trainable parameters. The Grad-CAM heat map visualization technique also shows how perfectly the proposed model extracts important features to classify breast cancers.

12.
Peer Peer Netw Appl ; 14(5): 3043-3057, 2021.
Article in English | MEDLINE | ID: mdl-33968292

ABSTRACT

Traditional healthcare services have transitioned into modern healthcare services where doctors remotely diagnose the patients. Cloud computing plays a significant role in this change by providing easy access to patients' medical records to all stakeholders, such as doctors, nurses, patients, life insurance agents, etc. Cloud services are scalable, cost-effective, and offer a broad range of mobile access to patients' electronic health record (EHR). Despite the cloud's enormous benefits like real-time data access, patients' EHR security and privacy are major concerns. Since the information about patients' health is highly sensitive and crucial, sharing it over the unsecured wireless medium brings many security challenges such as eavesdropping, modifications, etc. Considering the security needs of remote healthcare, this paper proposes a robust and lightweight, secure access scheme for cloud-based E-healthcare services. The proposed scheme addresses the potential threats to E-healthcare by providing a secure interface to stakeholders and prohibiting unauthorized users from accessing information stored in the cloud. The scheme makes use of multiple keys formed through the key derivation function (KDF) to ensure end-to-end ciphering of information for preventing misuse. The rights to access the cloud services are provided based on the identity and the association between stakeholders, thus ensuring privacy. Due to its simplicity and robustness, the proposed scheme is the best fit for protecting data security and privacy in cloud-based E-healthcare services.

13.
IEEE Internet Things J ; 8(21): 15683-15693, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-35782177

ABSTRACT

With the worldwide large-scale outbreak of COVID-19, the Internet of Medical Things (IoMT), as a new type of Internet of Things (IoT)-based intelligent medical system, is being used for COVID-19 prevention and detection. However, since the widespread use of IoMT will generate a large amount of sensitive information related to patients, it is becoming more and more important yet challenging to ensure data security and privacy of COVID-19 applications in IoMT. The leakage of private information during IoMT data fusion process will cause serious problems and affect people's willingness to contribute data in IoMT. To address these challenges, this article proposes a new privacy-enhanced data fusion strategy (PDFS). The proposed PDFS consists of four important components, i.e., sensitive task classification, task completion assessment, incentive mechanism-based task contract design, and homomorphic encryption-based data fusion. The extensive simulation experiments demonstrate that PDFS can achieve high task classification accuracy, task completion rate, task data reliability and task participation rate, and low average error rate, while improving the privacy protection for data fusion under COVID-19 application environments based on IoMT.

14.
IEEE Internet Things J ; 8(21): 15847-15854, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-35782185

ABSTRACT

Capturing psychological, emotional, and physiological states, especially during a pandemic, and leveraging the captured sensory data within the pandemic management ecosystem is challenging. Recent advancements for the Internet of Medical Things (IoMT) have shown promising results from collecting diversified types of such emotional and physical health-related data from the home environment. State-of-the-art deep learning (DL) applications can run in a resource-constrained edge environment, which allows data from IoMT devices to be processed locally at the edge, and performs inferencing related to in-home health. This allows health data to remain in the vicinity of the user edge while ensuring the privacy, security, and low latency of the inferencing system. In this article, we develop an edge IoMT system that uses DL to detect diversified types of health-related COVID-19 symptoms and generates reports and alerts that can be used for medical decision support. Several COVID-19 applications have been developed, tested, and deployed to support clinical trials. We present the design of the framework, a description of our implemented system, and the accuracy results. The test results show the suitability of the system for in-home health management during a pandemic.

15.
Pattern Recognit ; 113: 107700, 2021 May.
Article in English | MEDLINE | ID: mdl-33100403

ABSTRACT

Various AI functionalities such as pattern recognition and prediction can effectively be used to diagnose (recognize) and predict coronavirus disease 2019 (COVID-19) infections and propose timely response (remedial action) to minimize the spread and impact of the virus. Motivated by this, an AI system based on deep meta learning has been proposed in this research to accelerate analysis of chest X-ray (CXR) images in automatic detection of COVID-19 cases. We present a synergistic approach to integrate contrastive learning with a fine-tuned pre-trained ConvNet encoder to capture unbiased feature representations and leverage a Siamese network for final classification of COVID-19 cases. We validate the effectiveness of our proposed model using two publicly available datasets comprising images from normal, COVID-19 and other pneumonia infected categories. Our model achieves 95.6% accuracy and AUC of 0.97 in diagnosing COVID-19 from CXR images even with a limited number of training samples.

16.
IEEE Internet Things J ; 8(12): 9603-9610, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-36811011

ABSTRACT

Medical IoT devices are rapidly becoming part of management ecosystems for pandemics such as COVID-19. Existing research shows that deep learning (DL) algorithms have been successfully used by researchers to identify COVID-19 phenomena from raw data obtained from medical IoT devices. Some examples of IoT technology are radiological media, such as CT scanning and X-ray images, body temperature measurement using thermal cameras, safe social distancing identification using live face detection, and face mask detection from camera images. However, researchers have identified several security vulnerabilities in DL algorithms to adversarial perturbations. In this article, we have tested a number of COVID-19 diagnostic methods that rely on DL algorithms with relevant adversarial examples (AEs). Our test results show that DL models that do not consider defensive models against adversarial perturbations remain vulnerable to adversarial attacks. Finally, we present in detail the AE generation process, implementation of the attack model, and the perturbations of the existing DL-based COVID-19 diagnostic applications. We hope that this work will raise awareness of adversarial attacks and encourages others to safeguard DL models from attacks on healthcare systems.

17.
Sustain Cities Soc ; 64: 102582, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33178557

ABSTRACT

Sustainable smart city initiatives around the world have recently had great impact on the lives of citizens and brought significant changes to society. More precisely, data-driven smart applications that efficiently manage sparse resources are offering a futuristic vision of smart, efficient, and secure city operations. However, the ongoing COVID-19 pandemic has revealed the limitations of existing smart city deployment; hence; the development of systems and architectures capable of providing fast and effective mechanisms to limit further spread of the virus has become paramount. An active surveillance system capable of monitoring and enforcing social distancing between people can effectively slow the spread of this deadly virus. In this paper, we propose a data-driven deep learning-based framework for the sustainable development of a smart city, offering a timely response to combat the COVID-19 pandemic through mass video surveillance. To implementing social distancing monitoring, we used three deep learning-based real-time object detection models for the detection of people in videos captured with a monocular camera. We validated the performance of our system using a real-world video surveillance dataset for effective deployment.

18.
Neural Comput Appl ; : 1-14, 2020 Sep 16.
Article in English | MEDLINE | ID: mdl-32958982

ABSTRACT

Terminology is the most basic information that researchers and literature analysis systems need to understand. Mining terms and revealing the semantic relationships between terms can help biomedical researchers find solutions to some major health problems and motivate researchers to explore innovative biomedical research issues. However, how to mine terms from biomedical literature remains a challenge. At present, the research on text segmentation in natural language processing (NLP) technology has not been well applied in the biomedical field. Named entity recognition models usually require a large amount of training corpus, and the types of entities that the model can recognize are limited. Besides, dictionary-based methods mainly use pre-established vocabularies to match the text. However, this method can only match terms in a specific field, and the process of collecting terms is time-consuming and labour-intensive. Many scenarios faced in the field of biomedical research are unsupervised, i.e. unlabelled corpora, and the system may not have much prior knowledge. This paper proposes the TermInformer project, which aims to mine the meaning of terms in an open fashion by calculating terms and find solutions to some of the significant problems in our society. We propose an unsupervised method that can automatically mine terms in the text without relying on external resources. Our method can generally be applied to any document data. Combined with the word vector training algorithm, we can obtain reusable term embeddings, which can be used in any NLP downstream application. This paper compares term embeddings with existing word embeddings. The results show that our method can better reflect the semantic relationship between terms. Finally, we use the proposed method to find potential factors and treatments for lung cancer, breast cancer, and coronavirus.

19.
Sensors (Basel) ; 20(8)2020 Apr 22.
Article in English | MEDLINE | ID: mdl-32331260

ABSTRACT

The IEEE 802.15.6 standard has the potential to provide cost-effective and unobtrusive medical services to individuals with chronic health conditions. It is a low-power standard developed for wireless body area networks and enables wireless communication inside or near a human body. This standard utilizes a Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) protocol to improve network performance under different channel access priorities. However, the CSMA/CA proposed in the IEEE 802.15.6 standard has poor throughput performance and link reliability when some of the nodes deployed on a human body are hidden from each other. We employ the RTS/CTS scheme to solve hidden node problems in IEEE 802.15.6 networks over a lossy channel. To improve performance of the RTS/CTS scheme, we adjust transmission power levels of the nodes according to transmission failures. We estimate throughput and energy consumption of the proposed model by differentiating several parameters, such as contention window size, values of bit error ratios, number of nodes in different priority classes. The performance results are obtained through analytical approximations and simulations. We observe that the proposed model significantly improves performance of the IEEE 802.15.6 CSMA/CA by resolving hidden node problems.


Subject(s)
Computer Communication Networks , Wireless Technology , Delivery of Health Care
20.
IEEE Access ; 8: 205071-205087, 2020.
Article in English | MEDLINE | ID: mdl-34192116

ABSTRACT

Recent advancements in the Internet of Health Things (IoHT) have ushered in the wide adoption of IoT devices in our daily health management. For IoHT data to be acceptable by stakeholders, applications that incorporate the IoHT must have a provision for data provenance, in addition to the accuracy, security, integrity, and quality of data. To protect the privacy and security of IoHT data, federated learning (FL) and differential privacy (DP) have been proposed, where private IoHT data can be trained at the owner's premises. Recent advancements in hardware GPUs even allow the FL process within smartphone or edge devices having the IoHT attached to their edge nodes. Although some of the privacy concerns of IoHT data are addressed by FL, fully decentralized FL is still a challenge due to the lack of training capability at all federated nodes, the scarcity of high-quality training datasets, the provenance of training data, and the authentication required for each FL node. In this paper, we present a lightweight hybrid FL framework in which blockchain smart contracts manage the edge training plan, trust management, and authentication of participating federated nodes, the distribution of global or locally trained models, the reputation of edge nodes and their uploaded datasets or models. The framework also supports the full encryption of a dataset, the model training, and the inferencing process. Each federated edge node performs additive encryption, while the blockchain uses multiplicative encryption to aggregate the updated model parameters. To support the full privacy and anonymization of the IoHT data, the framework supports lightweight DP. This framework was tested with several deep learning applications designed for clinical trials with COVID-19 patients. We present here the detailed design, implementation, and test results, which demonstrate strong potential for wider adoption of IoHT-based health management in a secure way.

SELECTION OF CITATIONS
SEARCH DETAIL
...