Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Phys Chem Chem Phys ; 24(23): 14119-14139, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35593423

ABSTRACT

Transition metal oxides (TMOs) have remarkable physicochemical properties, are non-toxic, and have low cost and high annual production, thus they are commonly studied for various technological applications. Density functional theory (DFT) can help to optimize TMO materials by providing insights into their electronic, optical and thermodynamic properties, and hence into their structure-performance relationships, over a wide range of solid-state structures and compositions. However, this is underpinned by the choice of the exchange-correlation (XC) functional, which is critical to accurately describe the highly localized and correlated 3d-electrons of the transition metals in TMOs. This tutorial review presents a benchmark study of density functionals (DFs), ranging from generalized gradient approximation (GGA) to range-separated hybrids (RSH), with the all-electron def2-TZVP basis set, comparing magneto-electro-optical properties of 3d TMOs against experimental observations. The performance of the DFs is assessed by analyzing the band structure, density of states, magnetic moment, structural static and dynamic parameters, optical properties, spin contamination and computational cost. The results disclose the strengths and weaknesses of the XC functionals, in terms of accuracy, and computational efficiency, suggesting the unprecedented PBE0-1/5 as the best candidate. The findings of this work contribute to necessary developments of XC functionals for periodic systems, and materials science modelling studies, particularly informing how to select the optimal XC functional to obtain the most trustworthy description of the ground-state electron structure of 3d TMOs.

2.
ACS Appl Mater Interfaces ; 13(30): 36426-36435, 2021 Aug 04.
Article in English | MEDLINE | ID: mdl-34308641

ABSTRACT

Thin SiOx interlayers are often formed naturally during the deposition of transition metal oxides on silicon surfaces due to interfacial reaction. The SiOx layer, often only several atomic layers thick, becomes the interface between the Si and deposited metal oxide and can therefore influence the electrical properties and thermal stability of the deposited stack. This work explores the potential benefits of controlling the properties of the SiOx interlayer by the introduction of pregrown high-quality SiOx which also inhibits the formation of low-quality SiOx from the metal-oxide deposition process. This work demonstrates that a high-quality pregrown SiOx can reduce the interfacial reaction and results in a more stoichiometric MoOx with improved surface passivation and thermal stability linked to its lower Dit. Detailed experimental data on carrier selectivity, carrier transport efficiency, annealing stability up to 250 °C, and in-depth material analysis are presented.

3.
ACS Nano ; 13(6): 6356-6362, 2019 Jun 25.
Article in English | MEDLINE | ID: mdl-31017761

ABSTRACT

In order to achieve a high performance-to-cost ratio to photovoltaic devices, the development of crystalline silicon (c-Si) solar cells with thinner substrates and simpler fabrication routes is an important step. Thin-film heterojunction solar cells (HSCs) with dopant-free and carrier-selective configurations look like ideal candidates in this respect. Here, we investigated the application of n-type silicon/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) HSCs on periodic nanopyramid textured, ultrathin c-Si (∼25 µm) substrates. A fluorine-doped titanium oxide film was used as an electron-selective passivating layer showing excellent interfacial passivation (surface recombination velocity ∼10 cm/s) and contact property (contact resistivity ∼20 mΩ/cm2). A high efficiency of 15.10% was finally realized by optimizing the interfacial recombination and series resistance at both the front and rear sides, showing a promising strategy to fabricate high-performance ultrathin c-Si HSCs with a simple and low-temperature procedure.

4.
ACS Appl Mater Interfaces ; 10(16): 13509-13518, 2018 Apr 25.
Article in English | MEDLINE | ID: mdl-29620864

ABSTRACT

The transition-metal disulfide (MoS2) is a fantastic material used in diverse fields of applications. Ionic diffusivity and interfacial exchange current density are model parameters that play a crucial role for the optimization of device performances, which are not clearly known for this material. The additive-free dense film of MoS2 has been deposited by a facile electrodeposition approach and characterized by structural, morphological, and compositional analyses. This report provides the characterization of interfacial charge-transfer kinetics and diffusion of lithium ion in the MoS2 films as a function of lithium concentration at 25 °C temperature. The interfacial exchange current density is observed to be varied barely, ∼0.069-0.066 mA/cm2, with the change of lithium content, from x = 0.01-0.25, in Li xMoS2. The ionic diffusivity of the film is found to be in the range of ∼3 × 10-11-10-11 cm2 s-1 and does not vary much with the measured lithium concentration window. The electrochemical performances of the material are limited by the transport of lithium ion and interfacial kinetics over the measured state of lithium content. A submicron-size particle with high surface area is needed to be used as an electrode of the material for practical C-rates.

5.
Sci Rep ; 7(1): 6788, 2017 07 28.
Article in English | MEDLINE | ID: mdl-28754902

ABSTRACT

In our work, eco-friendly, non-vacuum and low cost Electrostatic Spray Assisted Vapour Deposition (ESAVD) method has been used to produce Cu(In,Ga)(S,Se)2 (CIGS) solar cells. Copper (Cu) deficient (Cu/In + Ga = 0.76) CIGS films were designed to avoid the rather dangerous KCN treatment step for the removal of conductive minor phases of Cu2S/Cu2Se. A simple sodium (Na) treatment method was used to modify the morphology and electronic properties of the absorber and it clearly improved the solar cell performance. The SEM and XRD results testified a slightly increase of the grain size and (112) crystal orientation in the Na-incorporated CIGS thin films. From the Mott-schottky results, it can be seen that the functions of the Na treatment in our non-vacuum deposited CIGS are mainly used for defect passivation and reduction of charge recombination. Photovoltaic characteristics and j-V curve demonstrated that the dipping of CIGS films in 0.2 M NaCl solution for 20 minutes followed by selenization at 550 °C under selenium vapor resulted in the optimum photovoltaic performance, with j sc, V oc, FF and η of the optimized solar cell of 29.30 mA cm-2, 0.564 V, 65.59% and 10.83%, respectively.

6.
ACS Appl Mater Interfaces ; 7(40): 22497-503, 2015 Oct 14.
Article in English | MEDLINE | ID: mdl-26390182

ABSTRACT

Chalcopyrite Cu(In,Ga)(S,Se)2 (CIGSSe) thin films have been deposited by a novel, nonvacuum, and cost-effective electrostatic spray-assisted vapor deposition (ESAVD) method. The generation of a fine aerosol of precursor solution, and their controlled deposition onto a molybdenum substrate, results in adherent, dense, and uniform Cu(In,Ga)S2 (CIGS) films. This is an essential tool to keep the interfacial area of thin film solar cells to a minimum value for efficient charge separation as it helps to achieve the desired surface smoothness uniformity for subsequent cadmium sulfide and window layer deposition. This nonvacuum aerosol based approach for making the CIGSSe film uses environmentally benign precursor solution, and it is cheaper for producing solar cells than that of the vacuum-based thin film solar technology. An optimized CIGSSe thin film solar cell with a device configuration of molybdenum-coated soda-lime glass substrate/CIGSSe/CdS/i-ZnO/AZO shows the photovoltaic (j-V) characteristics of Voc=0.518 V, jsc=28.79 mA cm(-2), fill factor=64.02%, and a promising power conversion efficiency of η=9.55% under simulated AM 1.5 100 mW cm(-2) illuminations, without the use of an antireflection layer. This demonstrates the potential of ESAVD deposition as a promising alternative approach for making thin film CIGSSe solar cells at a lower cost.

7.
Phys Chem Chem Phys ; 15(13): 4767-74, 2013 Apr 07.
Article in English | MEDLINE | ID: mdl-23426226

ABSTRACT

Semiconductor-sensitized NiO photocathodes have been fabricated by successive ionic-layer adsorption and reaction (SILAR) deposition of CdS, CdSe and cascaded CdS/CdSe onto mesoscopic NiO films. Detailed morphological and structural characterization reveals that the growth of CdS and CdSe on mesoscopic NiO electrodes results in the formation of crystalline and conformal layers under ambient conditions. With a polysulfide redox electrolyte and a Pt counter electrode, CdX (X = S and Se)-sensitized p-NiO solar cells operating in a photocathodic mode are unambiguously demonstrated when NiO blocking layers are used, which are critical to prevent anodic photocurrent due to electron injection from CdX into the SnO2:F substrate. To decrease the recombination rate, a CdS barrier layer was deposited between NiO and a CdSe sensitizer which results in much enhanced cell performance. Front and rear spectral incident photon-to-current efficiency (IPCE) measurements were used to investigate charge collection and separation in the cells. The measurements indicate that charge collection in this system is limited by a short hole diffusion length.

8.
Phys Chem Chem Phys ; 14(20): 7367-74, 2012 May 28.
Article in English | MEDLINE | ID: mdl-22531753

ABSTRACT

Metal oxide semiconductors with lower lying conduction band minimum and superior electron mobility are essential for efficient charge separation and collection in PbS-sensitized solar cells. In the present study, mesoscopic SnO(2) was investigated as an alternative photoanode to the commonly used TiO(2) and examined comprehensively in PbS-sensitized liquid junction solar cells. To exploit the capability of PbS in an optimized structure, cascaded nPbS/nCdS and alternate n(PbS/CdS) layers deposited by a successive ionic layer adsorption and reaction method were systematically scrutinized. It was observed that the surface of SnO(2) has greater affinity to the growth of PbS compared with TiO(2), giving rise to much enhanced light absorption. In addition, the deposition of a CdS buffer layer and a ZnS passivation layer before and after a PbS layer was found to be beneficial for efficient charge separation. Under optimized conditions, cascaded PbS/CdS-sensitized SnO(2) exhibited an unprecedented photocurrent density of 17.38 mA cm(-2) with pronounced infrared light harvesting extending beyond 1100 nm, and a power conversion efficiency of 2.23% under AM 1.5, 1 sun illumination. In comparison, TiO(2) cells fabricated under similar conditions showed much inferior performance owing to the less efficient light harnessing of long wavelength photons. We anticipate that the systematic study of PbS-sensitized solar cells utilizing different metal oxide semiconductors as electron transporters would provide useful insights and promote the development of semiconductor-sensitized mesoscopic solar cells employing panchromatic sensitizers.

9.
Phys Chem Chem Phys ; 14(19): 7154-61, 2012 May 21.
Article in English | MEDLINE | ID: mdl-22466412

ABSTRACT

The optical band gap of the light absorber and the alignment of its bands with the underlying wide band gap metal oxide are critical for efficient light harvesting and charge separation in semiconductor-sensitized solar cells (SSCs). In practice, these two requirements are however not always fulfilled concomitantly in SSCs. Favourable band alignment in CdSe-sensitized TiO2 requires utilization of quantum sized CdSe, which causes great losses in the harvesting of long wavelength photons due to quantum confinement effects. In the present study, ternary cadmium sulfoselenide (CdSxSe1-x), which has a tunable band gap between those of CdSe and CdS without reducing the dimension, was proposed as a sensitizer for TiO2. CdSxSe1-x was successfully synthesized by alternately depositing CdS and CdSe layers under ambient conditions. SSCs utilizing CdSxSe1-x-sensitized TiO2 yielded a power conversion efficiency of 4.05% under simulated AM1.5 100 mW cm(-2) illumination, rivalling the well-studied cascaded CdS/CdSe electrodes when an aqueous polysulfide solution was used as the electrolyte and Cu2S as the counter electrode. The findings of the present study provide an alternative and viable approach for optimizing the energetics of semiconductor sensitizers for efficient charge separation, while also maintaining good light harvesting.

10.
ACS Nano ; 5(4): 3172-81, 2011 Apr 26.
Article in English | MEDLINE | ID: mdl-21384799

ABSTRACT

CdS/CdSe-sensitized nanostructured SnO(2) solar cells exhibiting record short-circuit photocurrent densities have been fabricated. Under simulated AM 1.5, 100 mW cm(-2) illumination, photocurrents of up to 17.40 mA cm(-2) are obtained, some 32% higher than that achieved by otherwise identical semiconductor-sensitized solar cells (SSCs) employing nanostructured TiO(2). An overall power conversion efficiency of 3.68% has been achieved for the SnO(2)-based SSCs, which compares very favorably to efficiencies obtained by the TiO(2)-based SSCs. The characteristics of these SSCs were studied in more detail by optical measurements, spectral incident photon-to-current efficiency (IPCE) measurements, and impedance spectroscopy (IS). The apparent conductivity of sensitized SnO(2) photoanodes is apparently too large to be measured by IS, yet for otherwise identical TiO(2) electrodes, clear electron transport features could be observed in impedance spectra, tacitly implying slower charge transport in TiO(2). Despite this, electron diffusion length measurements suggest that charge collection losses are negligible in both kinds of cell. SnO(2)-based SSCs exhibit higher IPCEs compared with TiO(2)-based SSCs which, considering the similar light harvesting efficiencies and the long electron diffusion lengths implied by IS, is likely to be due to a superior charge separation yield. The resistance to charge recombination is also larger in SnO(2)-based SSCs at any given photovoltage, and open-circuit photovoltages under simulated AM 1.5, 100 mW cm(-2) illumination are only 26-56 mV lower than those obtained for TiO(2)-based SSCs, despite the conduction band minimum of SnO(2) being hundreds of millielectronvolts lower than that of TiO(2).

SELECTION OF CITATIONS
SEARCH DETAIL
...