Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Vet Med Int ; 2024: 8839830, 2024.
Article in English | MEDLINE | ID: mdl-38836166

ABSTRACT

This review delves into the historical context, current epidemiological landscape, genomics, and pathobiology of monkeypox virus (MPXV). Furthermore, it elucidates the present vaccination status and strategies to curb the spread of monkeypox. Monkeypox, caused by the Orthopoxvirus known as MPXV, is a zoonotic ailment. MPXV can be transmitted from person to person through respiratory droplets during prolonged face-to-face interactions. While many cases of monkeypox are self-limiting, vulnerable groups such as young children, pregnant women, and immunocompromised individuals may experience severe manifestations. Diagnosis predominantly relies on clinical presentations, complemented by laboratory techniques like RT-PCR. Although treatment is often not required, severe cases necessitate antiviral medications like tecovirimat, cidofovir, and brincidofovir. Vaccination, particularly using the smallpox vaccine, has proven instrumental in outbreak control, exhibiting an efficacy of at least 85% against mpox as evidenced by data from Africa. Mitigating transmission requires measures like wearing surgical masks, adequately covering skin lesions, and avoiding handling wild animals.

2.
Microbiol Resour Announc ; 13(5): e0115123, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38624203

ABSTRACT

Hepatitis B virus (HBV) infection is reported as a risk factor for chronic kidney disease (CKD). In this study, we sequenced the complete genome of an HBV strain identified in a CKD patient in Bangladesh, followed by genomic characterization and mutational analyses.

3.
Vet Med Sci ; 10(3): e1438, 2024 05.
Article in English | MEDLINE | ID: mdl-38555573

ABSTRACT

INTRODUCTION: Lumpy skin disease, an economically significant bovine illness, is now found in previously unheard-of geographic regions. Vaccination is one of the most important ways to stop its further spread. AIM: Therefore, in this study, we applied advanced immunoinformatics approaches to design and develop an effective lumpy skin disease virus (LSDV) vaccine. METHODS: The membrane glycoprotein was selected for prediction of the different B- and T-cell epitopes by using the immune epitope database. The selected B- and T-cell epitopes were combined with the appropriate linkers and adjuvant resulted in a vaccine chimera construct. Bioinformatics tools were used to predict, refine and validate the 2D, 3D structures and for molecular docking with toll-like receptor 4 using different servers. The constructed vaccine candidate was further processed on the basis of antigenicity, allergenicity, solubility, different physiochemical properties and molecular docking scores. RESULTS: The in silico immune simulation induced significant response for immune cells. In silico cloning and codon optimization were performed to express the vaccine candidate in Escherichia coli. This study highlights a good signal for the design of a peptide-based LSDV vaccine. CONCLUSION: Thus, the present findings may indicate that the engineered multi-epitope vaccine is structurally stable and can induce a strong immune response, which should help in developing an effective vaccine towards controlling LSDV infection.


Subject(s)
Lumpy skin disease virus , Vaccines , Animals , Cattle , Membrane Proteins , Epitopes, T-Lymphocyte , Immunoinformatics , Molecular Docking Simulation , Escherichia coli , Protein Subunit Vaccines
4.
Infect Genet Evol ; 119: 105572, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38367678

ABSTRACT

This investigation delineates an exhaustive analysis of the clinical, immunological, and genomic landscapes of hepatitis B virus (HBV) infection across a cohort of 22 verified patients. The demographic analysis unveiled a pronounced male bias (77.27%), with patient ages spanning 20 to 85 years and durations of illness ranging from 10 days to 4 years. Predominant clinical manifestations included fever, fatigue, anorexia, abdominal discomfort, and arthralgia, alongside observed co-morbidities such as chronic renal disorders and hepatocellular carcinoma. Antigenic profiling of the HBV envelope proteins elucidated significant heterogeneity among the infected subjects, particularly highlighted by discordances in the detection capabilities of small and large HBsAg assays, suggesting antigenic diversity. Quantitative assessment of viral loads unveiled a broad spectrum, accompanied by atypical HBeAg reactivity patterns, challenging the reliability of existing serological markers. Correlative studies between viral burden and antigenicity of the envelope proteins unearthed phenomena indicative of diagnostic evasion. Notably, samples demonstrating robust viral replication were paradoxically undetectable by the large HBsAg ELISA kit, advocating for more sophisticated diagnostic methodologies. Genotypic examination of three HBV isolates classified them as genotype D (D2), with phylogenetic alignment to strains from various global origins. Mutational profiling identified pivotal mutations within the basic core promoter and preS2/S1 regions, associated with an augmented risk of hepatocellular carcinoma. Further, mutations discerned in the small HBsAg and RT/overlap regions were recognized as contributors to vaccine and/or diagnostic escape mechanisms. In summation, this scholarly discourse elucidates the intricate interplay of clinical presentations, antigenic diversity, and genomic attributes in HBV infection, accentuating the imperative for ongoing investigative endeavors to refine diagnostic and therapeutic modalities.


Subject(s)
Carcinoma, Hepatocellular , Hepatitis B, Chronic , Hepatitis B , Liver Neoplasms , Humans , Male , Hepatitis B virus , Hepatitis B Surface Antigens/genetics , Bangladesh/epidemiology , Phylogeny , Reproducibility of Results , Mutation , Genotype , Antigenic Variation , Genomics , DNA, Viral/genetics
7.
Rev Med Virol ; 33(1): e2340, 2023 01.
Article in English | MEDLINE | ID: mdl-35238422

ABSTRACT

SARS-CoV-2 and dengue virus co-infection cases have been on the rise in dengue-endemic regions as coronavirus disease 2019 (COVID-19) spreads over the world, posing a threat of a co-epidemic. The risk of comorbidity in co-infection cases is greater than that of a single viral infection, which is a cause of concern. Although the pathophysiologies of the two infections are different, the viruses have comparable effects within the body, resulting in identical clinical symptoms in the case of co-infection, which adds to the complexity. Overlapping symptoms and laboratory features make proper differentiation of the infections important. However, specific biomarkers provide precise results that can be utilised to diagnose and treat a co-infection, whether it is simply COVID-19, dengue, or a co-infection. Though their treatment is distinguished, it becomes more complicated in circumstances of co-infection. As a result, regardless of whatever infection the first symptom points to, confirmation diagnosis of both COVID-19 and dengue should be mandatory, particularly in dengue-endemic regions, to prevent health deterioration in individuals treated for a single infection. There is still a scarcity of concise literature on the epidemiology, pathophysiology, diagnosis, therapy, and management of SARS-CoV-2 and dengue virus co-infection. The epidemiology of SARS-CoV-2 and dengue virus co-infection, the mechanism of pathogenesis, and the potential impact on patients are summarised in this review. The possible diagnosis with biomarkers, treatment, and management of the SARS-CoV-2 and dengue viruses are also discussed. This review will shed light on the appropriate diagnosis, treatment, and management of the patients suffering from SARS-CoV-2 and dengue virus co-infection.


Subject(s)
COVID-19 , Coinfection , Dengue Virus , Dengue , Humans , SARS-CoV-2 , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/complications , Coinfection/epidemiology , Dengue/diagnosis , Dengue/epidemiology , Dengue/therapy , COVID-19 Testing
8.
Vet Med Int ; 2022: 9076755, 2022.
Article in English | MEDLINE | ID: mdl-36106173

ABSTRACT

Infectious bursal disease (IBD) is a highly contagious disease that causes significant economic loss in chickens. A cross-sectional study was conducted in the Mymensingh district of Bangladesh to determine the seroprevalence of IBD virus (IBDV) antibodies in backyard chickens and their association with different epidemiological risk factors. A total of 460 serum samples were randomly collected from backyard chickens that had not been previously vaccinated against IBDV. The collected sera were examined using an enzyme-linked immunosorbent assay (ELISA). Data on epidemiological risk factors were collected through face-to-face interviews with owners and subjected to both uni- and multivariable risk analyses to determine their association with IBDV infection. Using ELISA, the overall seroprevalence of IBDV antibodies in backyard chickens was 83.4% (95% confidence interval: 79.8%-86.6%), among which, a significantly higher seroprevalence was recorded in females (83.4%, 345/350), 4-6 weeks age group (95.3%, 244/256), and unhealthy (95.0%, 57/60) backyard chickens than those of males, other age groups, and healthy chickens, respectively. Furthermore, chickens reared in free-ranging housing systems (93.3%, 280/300) and poor-conditioned houses (98.0%, 147/150) showed a significantly higher seropositivity of IBDV antibodies than those reared in separated housing systems and other hygienic-conditioned houses, respectively. Moreover, compared with their counterparts, a higher but nonsignificant seroprevalence of IBDV antibodies was observed in backyard chickens that were selected from Fulbaria Upazila (88.8%; 80/90) and which were brought from the marketplace (85.7%, 60/70). A higher seropositivity of IBDV antibodies was shown to be statistically associated with various critical epidemiological risk factors, indicating that field strains of IBDV were exposed in backyard chickens and could be readily transferred horizontally. Proper prevention and control methods, villagers' awareness of IBD, and the rapid and widespread use of seroepidemiological investigations could help to reduce the spread of IBDV infection in backyard chickens.

9.
Int J Mol Sci ; 23(3)2022 Jan 30.
Article in English | MEDLINE | ID: mdl-35163539

ABSTRACT

Hepatitis B virus infection (HBV) is one of the most common causes of hepatitis, and may lead to cirrhosis or hepatocellular carcinoma. According to the World Health Organization (WHO), approximately 296 million people worldwide are carriers of the hepatitis B virus. Various nucleos(t)ide analogs, which specifically suppress viral replication, are the main treatment agents for HBV infection. However, the development of drug-resistant HBV strains due to viral genomic mutations in genes encoding the polymerase protein is a major obstacle to HBV treatment. In addition, adverse effects can occur in patients treated with nucleos(t)ide analogs. Thus, alternative anti-HBV drugs of plant origin are being investigated as they exhibit excellent safety profiles and have few or no side effects. In this study, phytomedicines/phytochemicals exerting significant inhibitory effects on HBV by interfering with its replication were reviewed based on different compound groups. In addition, the chemical structures of these compounds were developed. This will facilitate their commercial synthesis and further investigation of the molecular mechanisms underlying their effects. The limitations of compounds previously screened for their anti-HBV effect, as well as future approaches to anti-HBV research, have also been discussed.


Subject(s)
Antiviral Agents/pharmacology , Hepatitis B virus/physiology , Hepatitis B/drug therapy , Phytochemicals/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , Drug Development , Drug Resistance, Viral/drug effects , Hepatitis B/virology , Hepatitis B virus/growth & development , Humans , Molecular Structure , Mutation , Phytochemicals/chemistry , Phytochemicals/therapeutic use , Virus Replication/drug effects
10.
J Med Virol ; 94(5): 1825-1832, 2022 05.
Article in English | MEDLINE | ID: mdl-35023191

ABSTRACT

Currently, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread worldwide as an Omicron variant. This variant is a heavily mutated virus and designated as a variant of concern by the World Health Organization (WHO). WHO cautioned that the Omicron variant of SARS-CoV-2 held a very high risk of infection, reigniting anxieties about the economy's recovery from the 2-year pandemic. The extensively mutated Omicron variant is likely to spread internationally, posing a high risk of infection surges with serious repercussions in some areas. According to preliminary data, the Omicron variant of SARS-CoV-2 has a higher risk of reinfection. On the other hand, whether the current COVID-19 vaccines could effectively resist the new strain is still under investigation. However, there is very limited information on the current situation of the Omicron variant, such as genomics, transmissibility, efficacy of vaccines, treatment, and management. This review focused on the genomics, transmission, and effectiveness of vaccines against the Omicron variant, which will be helpful for further investigation of a new variant of SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/prevention & control , COVID-19 Vaccines , Genomics , Humans , SARS-CoV-2/genetics
11.
J Med Virol ; 94(5): 1815-1820, 2022 05.
Article in English | MEDLINE | ID: mdl-34936124

ABSTRACT

The polybasic furin cleavage site insertion with four amino acid motifs (PRRA) in spike protein's S1/S2 junction site is important in determining viral infectivity, transmission, and host range. However, there is no review so far explaining the effect of the furin cleavage site of the spike protein on SARS-CoV-2 replication and pathogenesis in the host and immune responses and vaccination. Therefore, here we specifically focused on genomic evolution and properties of the cleavage site of spike protein in the context of SARS-CoV-2 followed by its effect on viral entry, replication, and pathogenesis. We also explored whether the spike protein furin cleavage site affected the host immune responses and SARS-CoV-2 vaccination. This review will help to provide novel insights into the effects of polybasic furin cleavage site on the current COVID-19 pandemic.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/prevention & control , COVID-19 Vaccines , Furin/metabolism , Humans , Immunity , Pandemics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/metabolism , Vaccination
12.
Viruses ; 13(11)2021 11 22.
Article in English | MEDLINE | ID: mdl-34835134

ABSTRACT

Mutations in HBsAg, the surface antigen of the hepatitis B virus (HBV), might affect the serum HBV DNA level of HBV-infected patients, since the reverse transcriptase (RT) domain of HBV polymerase overlaps with the HBsAg-coding region. We previously identified a diagnostic escape mutant (W3S) HBV that produces massively glycosylated HBsAg. In this study, we constructed an HBV-producing vector that expresses W3S HBs (pHB-W3S) along with a wild-type HBV-producing plasmid (pHB-WT) in order to analyze the physicochemical properties, replication, and antiviral drug response of the mutant. Transfection of either pHB-WT or W3S into HepG2 cells yielded similar CsCl density profiles and eAg expression, as did transfection of a glycosylation defective mutant, pHB-W3S (N146G), in which a glycosylation site at the 146aa asparagine (N) site of HBs was mutated to glycine (G). Virion secretion, however, seemed to be severely impaired in cases of pHB-W3S and pHB-W3S (N146G), compared with pHB-WT, as determined by qPCR and Southern blot analysis. Furthermore, inhibition of glycosylation using tunicamycinTM on wild-type HBV production also reduced the virion secretion. These results suggested that the HBV core and Dane particle could be formed either by massively glycosylated or glycosylation-defective HBsAg, but reduced and/or almost completely blocked the virion secretion efficiency, indicating that balanced glycosylation of HBsAg is required for efficient release of HBV, and mutations inducing an imbalanced glycosylation of HBs would cause the virion to become stuck in the cells, which might be associated with various pathogeneses due to HBV infection.


Subject(s)
Hepatitis B Surface Antigens/metabolism , Hepatitis B virus , Hepatitis B/virology , Glycosylation , Hep G2 Cells , Hepatitis B virus/genetics , Hepatitis B virus/metabolism , Humans , Mutation , Virus Replication
13.
J Adv Vet Anim Res ; 8(3): 367-369, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34722734

ABSTRACT

Many countries of the world have been combating the new variant of severe acute respiratory syndrome coronavirus 2. Black fungus is an opportunistic foe that may cause fatal infection in immunocompromised and steroid-treated coronavirus disease 2019 (COVID-19) patients. The COVID-19 associated mucormycosis (CAM) is now a serious concern throughout the world, including many Asian countries. Therefore, along with early and accurate diagnostic facilities, special care, and prompt, but coordinated approach are recommended to combat the CAM in patients.

14.
Infect Dis Rep ; 13(4): 902-909, 2021 Oct 16.
Article in English | MEDLINE | ID: mdl-34698182

ABSTRACT

Neuropilin-1 (NRP1) is a recently identified glycoprotein that is an important host factor for SARS-CoV-2 infection. On the other hand, angiotensin-converting enzyme-2 (ACE2) acts as a receptor for SARS-CoV-2. Additionally, both NRP1 and ACE2 express in the kidney and are associated with various renal diseases, including renal carcinoma. Therefore, the expression profiles of NRP1 and ACE2 in kidney renal clear cell carcinoma (KIRC) and kidney renal papillary cell carcinoma (KIRP) patients from the various cancer databases were investigated along with their impact on patients' survivability. In addition, coexpression analysis of genes involved in COVID-19, KIRC, and KIRP concerning NRP1 and ACE2 was performed. The results demonstrated that both t NRP1 and ACE2 expressions are upregulated in KIRC and KIRP compared to healthy conditions and are significantly correlated with the survivability rate of KIRC patients. A total of 128 COVID-19-associated genes are coexpressed, which are positively associated with NRP1 and ACE2 both in KIRC and KIRP. Therefore, it might be suggested that, along with the ACE2, high expression of the newly identified host factor NRP1 in renal carcinomas may play a vital role in the increased risk of SARS-CoV-2 infection and survivability of COVID-19 patients suffering from kidney cancers. The findings of this investigation will be helpful for further molecular studies and prevention and/or treatment strategies for COVID-19 patients associated with renal carcinomas.

15.
Front Microbiol ; 12: 735305, 2021.
Article in English | MEDLINE | ID: mdl-34603265

ABSTRACT

The subtype prevalence, drug resistance- and pathogenicity-associated mutations, and the distribution of the influenza A virus (IAV) isolates identified in Bangladesh from 2002 to 2019 were analyzed using bioinformatic tools. A total of 30 IAV subtypes have been identified in humans (4), avian species (29), and environment (5) in Bangladesh. The predominant subtypes in human and avian species are H1N1/H3N2 and H5N1/H9N2, respectively. However, the subtypes H5N1/H9N2 infecting humans and H3N2/H1N1 infecting avian species have also been identified. Among the avian species, the maximum number of subtypes (27) have been identified in ducks. A 3.56% of the isolates showed neuraminidase inhibitor (NAI) resistance with a prevalence of 8.50, 1.33, and 2.67% in avian species, humans, and the environment, respectively, the following mutations were detected: V116A, I117V, D198N, I223R, S247N, H275Y, and N295S. Prevalence of adamantane-resistant IAVs was 100, 50, and 30.54% in humans, the environment, and avian species, respectively, the subtypes H3N2, H1N1, H9N2, and H5N2 were highly prevalent, with the subtype H5N1 showing a comparatively lower prevalence. Important PB2 mutations such D9N, K526R, A588V, A588I, G590S, Q591R, E627K, K702R, and S714R were identified. A wide range of IAV subtypes have been identified in Bangladesh with a diversified genetic variation in the NA, M2, and PB2 proteins providing drug resistance and enhanced pathogenicity. This study provides a detailed analysis of the subtypes, and the host range of the IAV isolates and the genetic variations related to their proteins, which may aid in the prevention, treatment, and control of IAV infections in Bangladesh, and would serve as a basis for future investigations.

16.
J Adv Vet Anim Res ; 8(2): 323-329, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34395604

ABSTRACT

OBJECTIVE: Chicken infectious anemia virus (CIAV) is an economically important emerging infection of poultry as it causes immunosuppression and reduces egg production. Although it is worldwide distributed and first reported (single case) in Bangladesh in 2002, no epidemiological and serological investigations have been conducted. The current study aimed to conduct a serological investigation on the prevalence of CIAV infection in broiler breeder and layer farms in some selected areas of Bangladesh. MATERIALS AND METHODS: A total number of 460 sera samples were randomly collected from unvaccinated broiler breeder and layer flocks, of which 276 were from 11 broiler breeder farms and 184 from 12 layer farms. The sera samples were subjected to a commercially available enzyme-linked immunosorbent assay kit to observe antibodies induced by CIAV. RESULTS: Results demonstrated that the overall prevalence of CIAV was 83.6% among a total of 460 samples. In broiler breeder birds, the prevalence was 89.9%, whereas it was 78.3% in layer birds. A higher number of female birds was found to be seropositive than male birds. However, chickens of all age groups were found to be susceptible to the virus. CONCLUSIONS: These results indicate the presence of CIAV in Bangladesh, which may be the sequel of naturally occurring either vertical or horizontal infection in all bird flocks tested without clinical symptoms of the disease. A further epidemiological investigation will be required, followed by molecular isolation and characterization of the virus for suitable vaccine candidate selection and/or preparation.

17.
Open Vet J ; 11(1): 42-51, 2021.
Article in English | MEDLINE | ID: mdl-33898283

ABSTRACT

Background: Duck viral enteritis, commonly known as duck plague (DP), is an acute and contagious fatal disease in ducks, geese, and swans caused by the DP virus (DPV). It poses a serious threat to the growth of duck farming in the Haor (wetland) areas of Bangladesh. Aim: This study aimed to detect the circulating DPV by molecular characterization, followed by phylogenetic analysis, targeting the UL30 gene in infected ducks from five Haor districts in Bangladesh and to observe the variation in the genome sequence between the field virus and vaccine strain of DPV. Methods: A total of 150 samples (liver, 50; intestine, 50; and oropharyngeal tissue, 50) were collected from DP-suspected sick/dead ducks from 50 affected farms in Kishoreganj, Netrokona, B. Baria, Habiganj, and Sunamganj districts in Bangladesh. For the identification of DPV in collected samples, polymerase chain reaction (PCR) was utilized. Nucleotide sequences of the amplified UL30 gene were compared with those of other DPV strains available in GenBank. Results: Of the 150 samples, 90 (60%) were found to be positive for DPV, as confirmed by PCR. Organ-wise prevalence was higher in the liver (72%), followed by the intestine (64%) and oropharyngeal tissue (44%). Regarding areas, the highest and lowest prevalence in the liver and intestine was observed in Habiganj and B. Baria, respectively, whereas the highest and lowest prevalence in the oropharyngeal tissue was observed in B. Baria and Habiganj, respectively. Two isolates, BAU/KA/DPV(B1)/2014 from Kishoreganj and BAU/KA/DPV(B4)/2014 from Sunamganj were sequenced, and phylogenetic analysis revealed that these isolates are evolutionarily closely related to Chinese isolates of DPV. Additionally, the isolates of DPV BAU/KA/DPV(B1)/2014 and BAU/KA/DPV(B4)/2014 showed the highest (98%) similarity to each other. The nucleotide sequence of the isolate BAU/KA/DPV(B1)/2014 exhibited higher nucleotide variability (246 nucleotides) than that of the vaccine strain (accession no. EU082088), which may affect protein function and additional drug sensitivity. Conclusion: Based on the findings of the molecular study, it can be assumed that the Bangladeshi isolates and all Chinese isolates of DPV may have a common ancestry.


Subject(s)
Ducks , Mardivirus/genetics , Marek Disease/epidemiology , Poultry Diseases/epidemiology , Animals , Bangladesh/epidemiology , Base Sequence , DNA-Directed DNA Polymerase/analysis , Marek Disease/virology , Phylogeny , Polymerase Chain Reaction/veterinary , Poultry Diseases/virology , Prevalence , Viral Proteins/analysis
18.
Front Microbiol ; 12: 780887, 2021.
Article in English | MEDLINE | ID: mdl-35222296

ABSTRACT

Human immunodeficiency virus, hepatitis B virus, and hepatitis C virus are three blood-borne viruses that can cause major global health issues by increasing severe morbidity. There is a high risk of coinfection with these viruses in individuals because of their same transmission routes through blood using shared needles, syringes, other injection equipment, sexual transmission, or even vertical transmission. Coinfection can cause various liver-related illnesses, non-hepatic organ dysfunction, followed by death compared to any of these single infections. The treatment of coinfected patients is complicated due to the side effects of antiviral medication, resulting in drug resistance, hepatotoxicity, and a lack of required responses. On the other hand, coinfected individuals must be treated with multiple drugs simultaneously, such as for HIV either along with HBV or HCV and HBV and HCV. Therefore, diagnosing, treating, and controlling dual infections with HIV, HBV, or HCV is complicated and needs further investigation. This review focuses on the current prevalence, risk factors, and pathogenesis of dual infections with HIV, HBV, and HCV. We also briefly overviewed the diagnosis and treatment of coinfections of these three blood-borne viruses.

19.
J Microbiol Immunol Infect ; 54(2): 175-181, 2021 Apr.
Article in English | MEDLINE | ID: mdl-32624360

ABSTRACT

Coronavirus disease-19 (COVID-19) caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is now a pandemic threat. This virus is supposed to be spread by human to human transmission. Cellular angiotensin-converting enzyme 2 (ACE2) is the receptor of SARS-CoV-2 which is identical or similar in different species of animals such as pigs, ferrets, cats, orangutans, monkeys, and humans. Moreover, a recent study predicted that dogs might be secondary hosts during the evolution of SARS-CoV-2 from bat to human. Therefore, there is a possibility of spreading SARS-CoV-2 through domestic pets. There are now many reports of SARS-CoV-2 positive cases in dogs, cats, tigers, lion, and minks. Experimental data showed ferrets and cats are highly susceptible to SARS-CoV-2 as infected by virus inoculation and can transmit the virus directly or indirectly by droplets or airborne routes. Based on these natural infection reports and experimental data, whether the pets are responsible for SARS-CoV-2 spread to humans; needs to be deeply investigated. Humans showing clinical symptoms of respiratory infections have been undergoing for the COVID-19 diagnostic test but many infected people and few pets confirmed with SARS-CoV-2 remained asymptomatic. In this review, we summarize the natural cases of SARS-CoV-2 in animals with the latest researches conducted in this field. This review will be helpful to think insights of SARS-CoV-2 transmissions, spread, and demand for seroprevalence studies, especially in companion animals.


Subject(s)
COVID-19/transmission , COVID-19/virology , Host Specificity , SARS-CoV-2 , Zoonoses/transmission , Zoonoses/virology , Animals , Host Microbial Interactions , Humans , Pandemics , Pets/virology , Phylogeny , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Species Specificity
20.
Heliyon ; 6(12): e05798, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33363261

ABSTRACT

Honey and its compounds are drawing attention as an effective natural therapy because of its ability to attenuate acute inflammation through enhancing immune response. Several studies have proved its potential healing capability against numerous chronic diseases/conditions, including pulmonary disorders, cardiac disorders, diabetes, hypertension, autophagy dysfunction, bacterial, and fungal infections. More importantly, honey has proved its virucidal effect on several enveloped viruses such as HIV, influenza virus, herpes simplex, and varicella-zoster virus. Honey may be beneficial for patients with COVID-19 which is caused by an enveloped virus SARS-CoV-2 by boosting the host immune system, improving comorbid conditions, and antiviral activities. Moreover, a clinical trial of honey on COVID-19 patients is currently undergoing. In this review, we have tried to summarize the potential benefits of honey and its ingredients in the context of antimicrobial activities, some chronic diseases, and the host immune system. Thus, we have attempted to establish a relationship with honey for the treatment of COVID-19. This review will be helpful to reconsider the insights into the possible potential therapeutic effects of honey in the context of the COVID-19 pandemic. However, the effects of honey on SARS-CoV-2 replication and/or host immune system need to be further investigated by in vitro and in vivo studies.

SELECTION OF CITATIONS
SEARCH DETAIL
...