Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Diagnostics (Basel) ; 12(5)2022 May 09.
Article in English | MEDLINE | ID: mdl-35626333

ABSTRACT

Introduction: In biobanks, participants' biological samples are stored for future research. The application of artificial intelligence (AI) involves the analysis of data and the prediction of any pathological outcomes. In AI, models are used to diagnose diseases as well as classify and predict disease risks. Our research analyzed AI's role in the development of biobanks in the healthcare industry, systematically. Methods: The literature search was conducted using three digital reference databases, namely PubMed, CINAHL, and WoS. Guidelines for preferred reporting elements for systematic reviews and meta-analyses (PRISMA)-2020 in conducting the systematic review were followed. The search terms included "biobanks", "AI", "machine learning", and "deep learning", as well as combinations such as "biobanks with AI", "deep learning in the biobanking field", and "recent advances in biobanking". Only English-language papers were included in the study, and to assess the quality of selected works, the Newcastle-Ottawa scale (NOS) was used. The good quality range (NOS ≥ 7) is only considered for further review. Results: A literature analysis of the above entries resulted in 239 studies. Based on their relevance to the study's goal, research characteristics, and NOS criteria, we included 18 articles for reviewing. In the last decade, biobanks and artificial intelligence have had a relatively large impact on the medical system. Interestingly, UK biobanks account for the highest percentage of high-quality works, followed by Qatar, South Korea, Singapore, Japan, and Denmark. Conclusions: Translational bioinformatics probably represent a future leader in precision medicine. AI and machine learning applications to biobanking research may contribute to the development of biobanks for the utility of health services and citizens.

2.
Bioengineering (Basel) ; 9(3)2022 Mar 12.
Article in English | MEDLINE | ID: mdl-35324805

ABSTRACT

Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by motor impairment, as well as tremors, stiffness, and rigidity. Besides the typical motor symptomatology, some Parkinsonians experience non-motor symptoms such as hyposmia, constipation, urinary dysfunction, orthostatic hypotension, memory loss, depression, pain, and sleep disturbances. The correct diagnosis of PD cannot be easy since there is no standard objective approach to it. After the incorporation of machine learning (ML) algorithms in medical diagnoses, the accuracy of disease predictions has improved. In this work, we have used three deep-learning-type cascaded neural network models based on the audial voice features of PD patients, called Recurrent Neural Networks (RNN), Multilayer Perception (MLP), and Long Short-Term Memory (LSTM), to estimate the accuracy of PD diagnosis. A performance comparison between the three models was performed on a sample of the subjects' voice biomarkers. Experimental outcomes suggested that the LSTM model outperforms others with 99% accuracy. This study has also presented loss function curves on the relevance of good-fitting models to the detection of neurodegenerative diseases such as PD.

3.
Diagnostics (Basel) ; 11(11)2021 Nov 13.
Article in English | MEDLINE | ID: mdl-34829450

ABSTRACT

Adult-onset dementia disorders represent a challenge for modern medicine. Alzheimer's disease (AD) represents the most diffused form of adult-onset dementias. For half a century, the diagnosis of AD was based on clinical and exclusion criteria, with an accuracy of 85%, which did not allow for a definitive diagnosis, which could only be confirmed by post-mortem evaluation. Machine learning research applied to Magnetic Resonance Imaging (MRI) techniques can contribute to a faster diagnosis of AD and may contribute to predicting the evolution of the disease. It was also possible to predict individual dementia of older adults with AD screening data and ML classifiers. To predict the AD subject status, the MRI demographic information and pre-existing conditions of the patient can help to enhance the classifier performance. In this work, we proposed a framework based on supervised learning classifiers in the dementia subject categorization as either AD or non-AD based on longitudinal brain MRI features. Six different supervised classifiers are incorporated for the classification of AD subjects and results mentioned that the gradient boosting algorithm outperforms other models with 97.58% of accuracy.

SELECTION OF CITATIONS
SEARCH DETAIL
...