Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 95(45): 16701-16709, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37922203

ABSTRACT

A disposable microfluidic channel sensor printed on a plastic platform was developed to analyze heavy metal ions (HMIs) as a model target species. Precise separation and detection of multiple targets were established by symmetrically applying a small AC potential on the carbon channel walls to induce an electrodynamic force. The separation device was constructed by covering it with a plastic lid to achieve capillary action in the channel. The sample flow rate was regulated by the hydrophilicity of the lid plastic and electrodynamic convection by the AC field, which was characterized by the contact angle measurement and the additional electrodynamic force. The flow variables and their relevance to the capillary phenomena were demonstrated, and the analytical parameters were optimized. The working electrode was modified with poly(diamino terthiophene) anchored with nanosized graphene oxide (pDATT/GO) to enhance the detection performance. The experimental variables for separating and detecting the target species were optimized according to the AC frequency and amplitude, sample flow rate, electrolytes, pH, temperature, and applied potential for detection. The linear dynamic ranges were between 0.1 and 200.0 ppb, with detection limits of 0.04 ± 0.023, 0.29 ± 0.05, 0.07 ± 0.011, and 0.14 ± 0.06 ppb for Cu2+ Cd2+, Hg2+, and Pb2+, respectively. Finally, the reliability of the proposed method was evaluated through analysis of HMIs in real water samples. The results were matched to those obtained through parallel analysis using ICP-MS at a 95% confidence level.

2.
Anal Chem ; 91(21): 14109-14116, 2019 11 05.
Article in English | MEDLINE | ID: mdl-31556595

ABSTRACT

In this study, we have established the separation of Au nanoparticles (AuNPs) using a symmetrical AC electric field applied-electrochemical microfluidic device composed of carbon channel and detection electrodes. The lateral movement of AuNPs in the channel under the AC field was analyzed by simulation using the mathematically derived equations, which were formulated from Newtonian fluid mechanics. It shows that the nanoparticles are precisely separated according to their respective mass or size difference in a short time. The experimental parameters affecting the separation and detection of AuNPs were optimized in terms of applied frequency, amplitude, flow rate, buffer concentration, pH dependency, and temperature. The final separation was performed at 1.0 V amplitude with 8.0 MHz frequency at 0.4 µL/min flow rate for the separation, and the potential of 1.0 V was applied for the amperometric detection of AuNPs in a 0.1 M PBS. Before and after the separation, AuNPs (diameter range: 3-60 nm) were confirmed by UV-visible spectroscopy and transmission electron microscopy. In this case, the separation resolution was 3 nm with an enhanced separation efficiency of up to 597,503 plates/m for the AuNPs. In addition, the amperometric current response of the detection electrode under the AC field application was also enhanced by the sensitivity 5-fold compared with the absence of the AC field.

SELECTION OF CITATIONS
SEARCH DETAIL
...