Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Biotechnol J ; 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38488845

ABSTRACT

Eukaryotic translation initiation factors (eIFs) are important for mRNA translation but also pivotal for plant-virus interaction. Most of these plant-virus interactions were found between plant eIFs and the viral protein genome-linked (VPg) of potyviruses. In case of lost interaction due to mutation or deletion of eIFs, the viral translation and subsequent replication within its host is negatively affected, resulting in a recessive resistance. Here we report the identification of the Beta vulgaris Bv-eIF(iso)4E as a susceptibility factor towards the VPg-carrying beet chlorosis virus (genus Polerovirus). Using yeast two-hybrid and bimolecular fluorescence complementation assays, the physical interaction between Bv-eIF(iso)4E and the putative BChV-VPg was detected, while the VPg of the closely related beet mild yellowing virus (BMYV) was found to interact with the two isoforms Bv-eIF4E and Bv-eIF(iso)4E. These VPg-eIF interactions within the polerovirus-beet pathosystem were demonstrated to be highly specific, as single mutations within the predicted cap-binding pocket of Bv-eIF(iso)4E resulted in a loss of interaction. To investigate the suitability of eIFs as a resistance resource against beet infecting poleroviruses, B. vulgaris plants were genome edited by CRISPR/Cas9 resulting in knockouts of different eIFs. A simultaneous knockout of the identified BMYV-interaction partners Bv-eIF4E and Bv-eIF(iso)4E was not achieved, but Bv-eIF(iso)4EKO plants showed a significantly lowered BChV accumulation and decrease in infection rate from 100% to 28.86%, while no influence on BMYV accumulation was observed. Still, these observations support that eIFs are promising candidate genes for polerovirus resistance breeding in sugar beet.

2.
Mol Plant Pathol ; 24(10): 1319-1329, 2023 10.
Article in English | MEDLINE | ID: mdl-37410356

ABSTRACT

In the field of plant virology, the usage of reverse genetic systems has been reported for multiple purposes. One is understanding virus-host interaction by labelling viral cDNA clones with fluorescent protein genes to allow visual virus tracking throughout a plant, albeit this visualization depends on technical devices. Here we report the first construction of an infectious cDNA full-length clone of beet mosaic virus (BtMV) that can be efficiently used for Agrobacterium-mediated leaf inoculation with high infection rate in Beta vulgaris, being indistinguishable from the natural virus isolate regarding symptom development and vector transmission. Furthermore, the BtMV clone was tagged with the genes for the monomeric red fluorescent protein or the Beta vulgaris BvMYB1 transcription factor, which activates the betalain biosynthesis pathway. The heterologous expression of BvMYB1 results in activation of betalain biosynthesis genes in planta, allowing visualization of the systemic BtMV spread with the naked eye as red pigmentation emerging throughout beet leaves. In the case of BtMV, the BvMYB1 marker system is stable over multiple mechanical host passages, allows qualitative as well as quantitative virus detection and offers an excellent opportunity to label viruses in plants of the order Caryophyllales, allowing an in-depth investigation of virus-host interactions on the whole plant level.


Subject(s)
Beta vulgaris , Potyvirus , Transcription Factors/genetics , Transcription Factors/metabolism , Betalains , Beta vulgaris/metabolism , DNA, Complementary/genetics , Potyvirus/genetics , Plant Diseases
3.
Plant Biotechnol J ; 18(11): 2328-2344, 2020 11.
Article in English | MEDLINE | ID: mdl-32358986

ABSTRACT

Brassica napus is highly susceptible towards Verticillium longisporum (Vl43) with no effective genetic resistance. It is believed that the fungus reprogrammes plant physiological processes by up-regulation of so-called susceptibility factors to establish a compatible interaction. By transcriptome analysis, we identified genes, which were activated/up-regulated in rapeseed after Vl43 infection. To test whether one of these genes is functionally involved in the infection process and loss of function would lead to decreased susceptibility, we firstly challenged KO lines of corresponding Arabidopsis orthologs with Vl43 and compared them with wild-type plants. Here, we report that the KO of AtCRT1a results in drastically reduced susceptibility of plants to Vl43. To prove crt1a mutation also decreases susceptibility in B. napus, we identified 10 mutations in a TILLING population. Three T3 mutants displayed increased resistance as compared to the wild type. To validate the results, we generated CRISPR/Cas-induced BnCRT1a mutants, challenged T2 plants with Vl43 and observed an overall reduced susceptibility in 3 out of 4 independent lines. Genotyping by allele-specific sequencing suggests a major effect of mutations in the CRT1a A-genome copy, while the C-genome copy appears to have no significant impact on plant susceptibility when challenged with Vl43. As revealed by transcript analysis, the loss of function of CRT1a results in activation of the ethylene signalling pathway, which may contribute to reduced susceptibility. Furthermore, this study demonstrates a novel strategy with great potential to improve plant disease resistance.


Subject(s)
Arabidopsis , Brassica napus , Verticillium , Arabidopsis/genetics , Brassica napus/genetics , Calreticulin , Plant Diseases/genetics
4.
Mol Plant Pathol ; 20(12): 1645-1661, 2019 12.
Article in English | MEDLINE | ID: mdl-31603283

ABSTRACT

Verticillium longisporum infects oilseed rape (Brassica napus) and Arabidopsis thaliana. To investigate the early response of oilseed rape to the fungal infection, we determined transcriptomic changes in oilseed rape roots at 6 days post-inoculation (dpi) by RNA-Seq analysis, in which non-infected roots served as a control. Strikingly, a subset of genes involved in abscisic acid (ABA) biosynthesis was found to be down-regulated and the ABA level was accordingly attenuated in 6 dpi oilseed rape as compared with the control. Gene expression analysis revealed that this was mainly attributed to the suppression of BnNCED3-mediated ABA biosynthesis, involving, for example, BnWRKY57. However, this down-regulation of ABA biosynthesis could not be observed in infected Arabidopsis roots. Arabidopsis ABA- defective mutants nced3 and aao3 displayed pronounced tolerance to the fungal infection with delayed and impeded symptom development, even though fungal colonization was not affected in both mutants. These data suggest that ABA appears to be required for full susceptibility of Arabidopsis to the fungal infection. Furthermore, we found that in both 6 dpi oilseed rape and the Arabidopsis nced3 mutant, the salicylic acid (SA) signalling pathway was induced while the jasmonic acid (JA)/ethylene (ET) signalling pathway was concomitantly mitigated. Following these data, we conclude that in oilseed rape the V. longisporum infection triggers a host-specific suppression of the NCED3-mediated ABA biosynthesis, consequently increasing plant tolerance to the fungal infection. We believe that this might be part of the virulence strategy of V. longisporum to initiate/establish a long-lasting compatible interaction with oilseed rape (coexistence), which appears to be different from the infection process in Arabidopsis.


Subject(s)
Abscisic Acid/metabolism , Brassica napus/microbiology , Plant Diseases/microbiology , Verticillium/pathogenicity , Arabidopsis/metabolism , Arabidopsis/microbiology , Brassica napus/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant , Plant Diseases/genetics , Plant Roots/metabolism , Signal Transduction , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...