Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 9909, 2023 06 19.
Article in English | MEDLINE | ID: mdl-37336915

ABSTRACT

Liver disease is a serious health problem affecting people worldwide at an alarming rate. The present study aimed to investigate the protective effects of Ganoderma lucidum against CCl4-induced liver toxicity in rats. The experimental Long Evans rats were divided into five groups, of which four groups were treated with carbon tetrachloride (CCl4). Among the CCl4 treated groups, one of the groups was treated with silymarin and two of them with ethanolic extract of G. lucidum at 100 and 200 mg/Kg body weight. The oxidative stress parameters and endogenous antioxidant enzyme concentrations were assessed by biochemical tests. Liver enzymes ALT, AST, and ALP were determined spectrophotometrically. Histopathological examinations were carried out to assess hepatic tissue damage and fibrosis. Reverse transcription PCR (RT-PCR) was performed to determine the expression of IL-1ß, IL-6, IL-10, TNF-α, and TGF-ß genes. Gas Chromatography-Mass Spectroscopy (GC-MS) analysis revealed that G. lucidum is rich in several phytochemicals including 6-Octadecanoic acid (55.81%), l-( +)-Ascorbic acid 2,6-dihexadecanoate (18.72%), Cis-11-Eicosenamide (5.76%), and Octadecanoic acid (5.26%). Treatment with the G. lucidum extract reduced the elevated ALT, AST, ALP levels, and cellular oxidative stress markers and increased the endogenous antioxidant levels. Histopathology observations revealed that the inflammation, infiltration of immune cells, and aberration of collagen fibers in the hepatocytes were altered by the G. lucidum treatment. The increased expression of inflammatory cytokines TNF-α, TGF-ß, IL-1 ß, and IL-6 were markedly suppressed by G. lucidum extract treatment. G. lucidum also prevented the suppression of protective IL-10 expression by CCl4. This study strongly suggests that G. lucidum extract possesses significant hepatoprotective activity as evidenced by reduced oxidative stress and inflammation mediated by suppression in inflammatory cytokine expression and increased protective IL-10 cytokine expression.


Subject(s)
Chemical and Drug Induced Liver Injury , Reishi , Rats , Animals , Antioxidants/metabolism , Liver/metabolism , Rats, Long-Evans , Reishi/metabolism , Interleukin-10/metabolism , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , Chemical and Drug Induced Liver Injury/pathology , Oxidative Stress , Inflammation/pathology , Plant Extracts/pharmacology , Cytokines/metabolism , Transforming Growth Factor beta/metabolism , Carbon Tetrachloride/toxicity
2.
J Dig Dis ; 21(8): 430-436, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32585073

ABSTRACT

Inflammasomes have become an important natural sensor of host immunity, and can protect various organs against pathogenic infections, metabolic syndromes, cellular stress and cancer metastasis. Inflammasomes are intracellular multi-protein complexes found in both parenchymal and non-parenchymal cells, stimulating the initiation of caspase-1 and interleukin (IL)-1ß and IL-18 in response to cell danger signals. Inflammasomes induce cell death mechanisms. The potential role of NOD-like receptor protein 3 (NLRP3) inflammasome in alcoholic and non-alcoholic steatohepatitis, hepatitis, nanoparticle-induced liver injury and other liver diseases has recently attracted widespread attention from clinicians and researchers. In this review we summarize the role played by the NLRP3 inflammasome in molecular and pathophysiological mechanisms in the pathogenesis and progression of liver disease. This article aims to establish that targeting the NLRP3 inflammasome and other inflammasome components may make a significant therapeutic approach to the treatment of liver disease.


Subject(s)
Inflammasomes/genetics , Liver Diseases/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Adaptive Immunity/genetics , Animals , Caspase 1/metabolism , Cell Death/genetics , Disease Progression , Humans , Interleukin-18/metabolism , Interleukin-1beta/metabolism , Liver/metabolism , Signal Transduction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...