Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 13(18)2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37764590

ABSTRACT

Employing deep learning models to design high-performance metasurfaces has garnered significant attention due to its potential benefits in terms of accuracy and efficiency. A deep learning-based metasurface design framework typically comprises a forward prediction path for predicting optical responses and a backward retrieval path for generating geometrical configurations. In the forward design path, a specific geometrical configuration corresponds to a unique optical response. However, in the inverse design path, a single performance metric can correspond to multiple potential designs. This one-to-many mapping poses a significant challenge for deep learning models and can potentially impede their performance. Although representing the inverse path as a probabilistic distribution is a widely adopted method for tackling this problem, accurately capturing the posterior distribution to encompass all potential solutions remains an ongoing challenge. Furthermore, in most pioneering works, the forward and backward paths are captured using separate models. However, the knowledge acquired from the forward path does not contribute to the training of the backward model. This separation of models adds complexity to the system and can hinder the overall efficiency and effectiveness of the design framework. Here, we utilized an invertible neural network (INN) to simultaneously model both the forward and inverse process. Unlike other frameworks, INN focuses on the forward process and implicitly captures a probabilistic model for the inverse process. Given a specific optical response, the INN enables the recovery of the complete posterior over the parameter space. This capability allows for the generation of novel designs that are not present in the training data. Through the integration of the INN with the angular spectrum method, we have developed an efficient and automated end-to-end metasurface design and evaluation framework. This novel approach eliminates the need for human intervention and significantly speeds up the design process. Utilizing this advanced framework, we have effectively designed high-efficiency metalenses and dual-polarization metasurface holograms. This approach extends beyond dielectric metasurface design, serving as a general method for modeling optical inverse design problems in diverse optical fields.

2.
Nanomaterials (Basel) ; 13(11)2023 May 27.
Article in English | MEDLINE | ID: mdl-37299656

ABSTRACT

The carbon dioxide reduction reaction (CO2RR) is a promising method to both reduce greenhouse gas carbon dioxide (CO2) concentrations and provide an alternative to fossil fuel by converting water and CO2 into high-energy-density chemicals. Nevertheless, the CO2RR suffers from high chemical reaction barriers and low selectivity. Here we demonstrate that 4 nm gap plasmonic nano-finger arrays provide a reliable and repeatable plasmon-resonant photocatalyst for multiple-electrons reactions: the CO2RR to generate higher-order hydrocarbons. Electromagnetics simulation shows that hot spots with 10,000 light intensity enhancement can be achieved using nano-gap fingers under a resonant wavelength of 638 nm. From cryogenic 1H-NMR spectra, formic acid and acetic acid productions are observed with a nano-fingers array sample. After 1 h laser irradiation, we only observe the generation of formic acid in the liquid solution. While increasing the laser irradiation period, we observe both formic and acetic acid in the liquid solution. We also observe that laser irradiation at different wavelengths significantly affected the generation of formic acid and acetic acid. The ratio, 2.29, of the product concentration generated at the resonant wavelength 638 nm and the non-resonant wavelength 405 nm is close to the ratio, 4.93, of the generated hot electrons inside the TiO2 layer at different wavelengths from the electromagnetics simulation. This shows that product generation is related to the strength of localized electric fields.

3.
Small ; 19(2): e2204719, 2023 01.
Article in English | MEDLINE | ID: mdl-36333119

ABSTRACT

As the leading cause of death, heart attacks result in millions of deaths annually, with no end in sight. Early intervention is the only strategy for rescuing lives threatened by heart disease. However, the detection time of the fastest heart-attack detection system is >15 min, which is too long considering the rapid passage of life. In this study, a machine learning (ML)-driven system with a simple process, low-cost, short detection time (only 10 s), and high precision is developed. By utilizing a functionalized nanofinger structure, even a trace amount of biomarker leaked before a heart attack can be captured. Additionally, enhanced Raman profiles are constructed for predictive analytics. Five ML models are developed to harness the useful characteristics of each Raman spectrum and provide early warnings of heart attacks with >98% accuracy. Through the strategic combination of nanofingers and ML algorithms, the proposed warning system accurately provides alerts on silent heart-attack attempts seconds ahead of actual attacks.


Subject(s)
Myocardial Infarction , Spectrum Analysis, Raman , Humans , Spectrum Analysis, Raman/methods , Myocardial Infarction/diagnosis , Machine Learning , Algorithms
4.
Opt Express ; 27(16): 23645-23653, 2019 Aug 05.
Article in English | MEDLINE | ID: mdl-31510638

ABSTRACT

Effect of disorder on the emission directionality of a whispering gallery mode resonator comprising of circularly symmetric nanowire array is investigated using finite-difference time-domain analysis technique. In spite of rotational symmetry breaking, whispering gallery mode-like isotropic emission characteristics are retained by the nanowire array up to a certain degree of spatial disorder. For higher degrees of randomness, Anderson localized resonant modes are obtained with unidirectional emission characteristics, though the beam direction remains unpredictable because of the underlying random-scattering process. This shortcoming is overcome by designing a system of correlated disorder where nanowire spacing is varied gradually along the preferred axis of unidirectionality. This system, in spite of its high degree of disorder, can effectively support high-Q whispering gallery modes with tunable unidirectional emission characteristics.

SELECTION OF CITATIONS
SEARCH DETAIL
...