Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Bioengineering (Basel) ; 10(1)2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36671664

ABSTRACT

Pancreatic and ampullary cancers remain highly morbid diseases for which accurate clinical predictions are needed for precise therapeutic predictions. Patient-derived cancer organoids have been widely adopted; however, prior work has focused on well-level therapeutic sensitivity. To characterize individual oligoclonal units of therapeutic response, we introduce a low-volume screening assay, including an automated alignment algorithm. The oligoclonal growth response was compared against validated markers of response, including well-level viability and markers of single-cell viability. Line-specific sensitivities were compared with clinical outcomes. Automated alignment algorithms were generated to match organoids across time using coordinates across a single projection of Z-stacked images. After screening for baseline size (50 µm) and circularity (>0.4), the match efficiency was found to be optimized by accepting the diffusion thresholded with the root mean standard deviation of 75 µm. Validated well-level viability showed a limited correlation with the mean organoid size (R = 0.408), and a normalized growth assayed by normalized changes in area (R = 0.474) and area (R = 0.486). Subclonal populations were defined by both residual growth and the failure to induce apoptosis and necrosis. For a culture with clinical resistance to gemcitabine and nab-paclitaxel, while a therapeutic challenge induced a robust effect in inhibiting cell growth (GΔ = 1.53), residual oligoclonal populations were able to limit the effect on the ability to induce apoptosis (GΔ = 0.52) and cell necrosis (GΔ = 1.07). Bioengineered approaches are feasible to capture oligoclonal heterogeneity in organotypic cultures, integrating ongoing efforts for utilizing organoids across cancer types as integral biomarkers and in novel therapeutic development.

2.
RSC Adv ; 12(52): 34126-34141, 2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36540407

ABSTRACT

Cyclization of substituted thiosemicarbazones with α-bromo-4-cyanoacetophenone allows rapid single-step sustainable syntheses of 4-cyanophenyl-2-hydrazinylthiazoles libraries (30 examples, 66-79%). All show anticancer efficacy against HCT-116 and MCF-7 carcinoma cell lines with the majority being more active than cisplatin positive controls. The compounds 2-(2-(2-hydroxy-3-methylbenzylidene)hydrazinyl)-4-(4-cyanophenyl)thiazole (3f) and 2-(2-((pentafluorophenyl)methylene)-hydrazinyl)-4-(4-cyanophenyl)thiazole (3a') show optimal GI50 values (1.0 ± 0.1 µM and 1.7 ± 0.3 µM) against MCF-7 breast cancer cells. Against colorectal carcinoma HCT-116 cells, (2-(2-(3-bromothiophen-2-yl)methylene)hydrazinyl)-4-(4-cyanophenyl)thiazole (3b'), 2-(2-(2-hydroxy-3-methylbenzylidene)hydrazinyl)-4-(4-cyanophenyl)thiazole (3f), 2-(2-(2,6-dichlorobenzylidene)hydrazinyl)-4-(4-cyanophenyl)thiazole (3n) and 2-(2-(1-(4-fluorophenyl)ethylidene)hydrazinyl)-4-(4-cyanophenyl)thiazole (3w) are the most active (GI50 values: 1.6 ± 0.2, 1.6 ± 0.1, 1.1 ± 0.5 and 1.5 ± 0.8 µM respectively). Control studies with MRC-5 cells indicate appreciable selectivity towards the cancer cells targeted. Significant (p < 0.005) growth inhibition and cytotoxicity effects for the thiazoles 3 were corroborated by cell count and clonogenic assays using the same cancer cell lines at 5 and 10 µM agent concentrations. Cell cycle, caspase activation and Western blot assays demonstrated that compounds 3b' and 3f induce cancer cell death via caspase-dependent apoptosis. The combination of straight forward synthesis and high activity makes the thiazoles 3 an interesting lead for further development.

3.
Infect Disord Drug Targets ; 22(1): e290721195143, 2022.
Article in English | MEDLINE | ID: mdl-34376138

ABSTRACT

OBJECTIVE: To evaluate the efficacy of reported anti-malarial phytochemicals as lead compounds for possible drug development against COVID-19. METHODS: An in silico approach was used in this study to determine through molecular docking the binding affinities and site of binding of these phytochemicals to the 3C-like protease of COVID-19 which is considered as the main protease of the virus. RESULTS: A number of anti-malarial phytochemicals like apigenin-7-O-glucoside, decurvisine, luteolin- 7-O-glucoside, sargabolide J, and shizukaols A, B, F, and G showed predicted high binding energies with ΔG values of -8.0 kcal/mol or higher. Shizukaols F and B demonstrated the best binding energies of -9.5 and -9.8, respectively. The acridone alkaloid 5-hydroxynoracronycine also gave a predicted high binding energy of -7.9 kcal/mol. CONCLUSION: This is for the first time that decursivine and several shizukaols were reported as potential anti-viral agents. These compounds merit further studies to determine whether they can be effective drug candidates against COVID-19.


Subject(s)
Antimalarials , COVID-19 Drug Treatment , Antimalarials/pharmacology , Antimalarials/therapeutic use , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Coronavirus 3C Proteases , Glucosides , Humans , Molecular Docking Simulation , Peptide Hydrolases , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , SARS-CoV-2
4.
Curr Issues Mol Biol ; 45(1): 175-196, 2022 Dec 29.
Article in English | MEDLINE | ID: mdl-36661500

ABSTRACT

Here, we describe the anticancer activity of our novel bis-triazoles MS47 and MS49, developed previously as G-quadruplex stabilizers, focusing specifically upon the human melanoma MDA-MB-435 cell line. At the National Cancer Institute (NCI), USA, bis-triazole MS47 (NCS 778438) was evaluated against a panel of sixty human cancer cell lines, and showed selective, distinct multi-log differential patterns of activity, with GI50 and LC50 values in the sub-micromolar range against human cancer cells. MS47 showed highly selective cytotoxicity towards human melanoma, ovarian, CNS and colon cancer cell lines; in contrast, the leukemia cell lines interestingly showed resistance to MS47 cytotoxic activity. Further studies revealed the potent cell growth inhibiting properties of MS47 and MS49 against the human melanoma MDA-MB-435 cell line, as verified by MTT assays; both ligands were more potent against cancer cells than MRC-5 fetal lung fibroblasts (SI > 9). Melanoma colony formation was significantly suppressed by MS47 and MS49, and time- and dose-dependent apoptosis induction was also observed. Furthermore, MS47 significantly arrested melanoma cells at the G0/G1 cell cycle phase. While the expression levels of Hsp90 protein in melanoma cells were significantly decreased by MS49, corroborating its binding to the G4-DNA promoter of the Hsp90 gene. Both ligands failed to induce senescence in the human melanoma cells after 72 h of treatment, corroborating their weak stabilization of the telomeric G4-DNA.

5.
Molecules ; 26(8)2021 Apr 09.
Article in English | MEDLINE | ID: mdl-33918814

ABSTRACT

Cardamonin is a polyphenolic natural product that has been shown to possess cytotoxic activity against a variety of cancer cell lines. We previously reported the semi-synthesis of a novel Cu (II)-cardamonin complex (19) that demonstrated potent antitumour activity. In this study, we further investigated the bioactivity of 19 against MDA-MB-468 and PANC-1 cancer cells in an attempt to discover an effective treatment for triple-negative breast cancer (TNBC) and pancreatic cancer, respectively. Results revealed that 19 abolished the formation of MDA-MB-468 and PANC-1 colonies, exerted growth-inhibitory activity, and inhibited cancer cell migration. Further mechanistic studies showed that 19 induced DNA damage resulting in gap 2 (G2)/mitosis (M) phase arrest and microtubule network disruption. Moreover, 19 generated reactive oxygen species (ROS) that may contribute to induction of apoptosis, corroborated by activation of caspase-3/7, PARP cleavage, and downregulation of Mcl-1. Complex 19 also decreased the expression levels of p-Akt and p-4EBP1, which indicates that the compound exerts its activity, at least in part, via inhibition of Akt signalling. Furthermore, 19 decreased the expression of c-Myc in PANC-1 cells only, which suggests that it may exert its bioactivity via multiple mechanisms of action. These results demonstrate the potential of 19 as a therapeutic agent for TNBC and pancreatic cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Chalcones/pharmacology , Coordination Complexes/pharmacology , Copper/pharmacology , Pancreatic Neoplasms/pathology , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Signal Transduction , Triple Negative Breast Neoplasms/pathology , Adaptor Proteins, Signal Transducing/metabolism , Apoptosis/drug effects , Caspases/metabolism , Cell Cycle Checkpoints/drug effects , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Chalcones/chemistry , Coordination Complexes/chemistry , Copper/chemistry , Cytoskeleton/drug effects , Cytoskeleton/metabolism , Cytoskeleton/pathology , DNA Damage , Down-Regulation/drug effects , Histones/metabolism , Humans , Phosphorylation/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects
6.
Cancer Lett ; 453: 57-73, 2019 07 01.
Article in English | MEDLINE | ID: mdl-30930233

ABSTRACT

Natural products possess a significant role in anticancer therapy and many currently-used anticancer drugs are of natural origin. Cerberin (CR), a cardenolide isolated from the fruit kernel of Cerbera odollam, was found to potently inhibit cancer cell growth (GI50 values < 90 nM), colony formation and migration. Significant G2/M cell cycle arrest preceded time- and dose-dependent apoptosis-induction in human cancer cell lines corroborated by dose-and time-dependent PARP cleavage and caspase 3/7 activation, in addition to reduced Bcl-2 and Mcl-1 expression. CR potently inhibited PI3K/AKT/mTOR signalling depleting polo-like kinase 1 (PLK-1), c-Myc and STAT-3 expression. Additionally, CR significantly increased the generation of reactive oxygen species (ROS) producing DNA double strand breaks. Preliminary in silico biopharmaceutical assessment of CR predicted >60% bioavailability and rapid absorption; doses of 1-10 mg/kg CR were predicted to maintain efficacious unbound plasma concentrations (>GI50 value). CR's potent and selective anti-tumour activity, and its targeting of key signalling mechanisms pertinent to tumourigenesis support further preclinical evaluation of this cardiac glycoside.


Subject(s)
Cardenolides/pharmacology , Neoplasms/drug therapy , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/antagonists & inhibitors , A549 Cells , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cardenolides/chemistry , Cell Growth Processes/drug effects , Cell Line, Tumor , Cell Movement/drug effects , DNA Breaks, Double-Stranded , HCT116 Cells , HT29 Cells , Hep G2 Cells , Humans , MCF-7 Cells , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Reactive Oxygen Species/metabolism , TOR Serine-Threonine Kinases/metabolism
7.
Exp Parasitol ; 194: 67-78, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30268422

ABSTRACT

Treatment of drug resistant protozoa, bacteria, and viruses requires new drugs with alternative chemotypes. Such compounds could be found from Southeast Asian medicinal plants. The present study examines the cytotoxic, antileishmanial, and antiplasmodial effects of 11 ethnopharmacologically important plant species in Malaysia. Chloroform extracts were tested for their toxicity against MRC-5 cells and Leishmania donovani by MTT, and chloroquine-resistant Plasmodium falciparum K1 strain by Histidine-Rich Protein II ELISA assays. None of the extract tested was cytotoxic to MRC-5 cells. Extracts of Uvaria grandiflora, Chilocarpus costatus, Tabernaemontana peduncularis, and Leuconotis eugenifolius had good activities against L. donovani with IC50 < 50 µg/mL. Extracts of U. grandiflora, C. costatus, T. peduncularis, L. eugenifolius, A. subulatum, and C. aeruginosa had good activities against P. falciparum K1 with IC50 < 10 µg/mL. Pinoresinol isolated from C. costatus was inactive against L. donovani and P. falciparum. C. costatus extract and pinoresinol increased the sensitivity of Staphylococcus epidermidis to cefotaxime. Pinoresinol demonstrated moderate activity against influenza virus (IC50 = 30.4 ±â€¯11 µg/mL) and was active against Coxsackie virus B3 (IC50 = 7.1 ±â€¯3.0 µg/mL). ß-Amyrin from L. eugenifolius inhibited L. donovani with IC50 value of 15.4 ±â€¯0.01 µM. Furanodienone from C. aeruginosa inhibited L. donovani and P. falciparum K1 with IC50 value of 39.5 ±â€¯0.2 and 17.0 ±â€¯0.05 µM, respectively. Furanodienone also inhibited the replication of influenza and Coxsackie virus B3 with IC50 value of 4.0 ±â€¯0.5 and 7.2 ±â€¯1.4 µg/mL (Ribavirin: IC50: 15.6 ±â€¯2.0 µg/mL), respectively. Our study provides evidence that medicinal plants in Malaysia have potentials as a source of chemotypes for the development of anti-infective leads.


Subject(s)
Anti-Infective Agents/pharmacology , Leishmania donovani/drug effects , Medicine, East Asian Traditional/methods , Plant Extracts/pharmacology , Plants, Medicinal/chemistry , Plasmodium falciparum/drug effects , Anti-Infective Agents/toxicity , Apocynaceae/chemistry , Cell Line , Drug Synergism , Enterovirus B, Human/drug effects , Ethnopharmacology/methods , Furans/chemistry , Furans/isolation & purification , Furans/pharmacology , Furans/toxicity , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Influenza A Virus, H1N1 Subtype/drug effects , Inhibitory Concentration 50 , Lignans/chemistry , Lignans/isolation & purification , Lignans/pharmacology , Lignans/toxicity , Malaysia , Plant Extracts/chemistry , Plant Extracts/toxicity , Sesquiterpenes/chemistry , Sesquiterpenes/isolation & purification , Sesquiterpenes/pharmacology , Sesquiterpenes/toxicity , Tabernaemontana/chemistry , Uvaria/chemistry
8.
Arch Virol ; 163(8): 2121-2131, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29633078

ABSTRACT

Viral respiratory infections are raising serious concern globally. Asian medicinal plants could be useful in improving the current treatment strategies for influenza. The present study examines the activity of five plants from Bangladesh against influenza virus. MDCK cells infected with influenza virus A/Puerto Rico/8/34 (H1N1) were treated with increasing concentrations of ethyl acetate extracts, and their cytotoxicity (CC50), virus-inhibiting activity (IC50), and selectivity index (SI) were calculated. The ethyl acetate extract of fruits of Embelia ribes Burm. f. (Myrsinaceae) had the highest antiviral activity, with an IC50 of 0.2 µg/mL and a SI of 32. Its major constituent, embelin, was further isolated and tested against the same virus. Embelin demonstrated antiviral activity, with an IC50 of 0.3 µM and an SI of 10. Time-of-addition experiments revealed that embelin was most effective when added at early stages of the viral life cycle (0-1 h postinfection). Embelin was further evaluated against a panel of influenza viruses including influenza A and B viruses that were susceptible or resistant to rimantadine and oseltamivir. Among the viruses tested, avian influenza virus A/mallard/Pennsylvania/10218/84 (H5N2) was the most susceptible to embelin (SI = 31), while A/Aichi/2/68 (H3N2) virus was the most resistant (SI = 5). In silico molecular docking showed that the binding site for embelin is located in the receptor-binding domain of the viral hemagglutinin. The results of this study provide evidence that E. ribes can be used for development of a novel alternative anti-influenza plant-based agent.


Subject(s)
Antiviral Agents/pharmacology , Embelia/chemistry , Influenza A virus/drug effects , Influenza B virus/drug effects , Influenza, Human/virology , Plant Extracts/pharmacology , Antiviral Agents/chemistry , Benzoquinones/chemistry , Benzoquinones/pharmacology , Humans , Influenza A virus/physiology , Influenza B virus/physiology , Plant Extracts/chemistry
9.
Pharm Biol ; 56(1): 201-208, 2018 Dec.
Article in English | MEDLINE | ID: mdl-29529970

ABSTRACT

CONTEXT: The resistance of bacteria to antibiotics is raising serious concern globally. Asian medicinal plants could improve the current treatment strategies for bacterial infections. The antibacterial properties of medicinal plants used by the Khyang tribe in Bangladesh have not been investigated. OBJECTIVE: The present study examines the antibacterial properties of 18 medicinal plants used by the Khyang tribe in day-to-day practice against human pathogenic bacteria. MATERIALS AND METHODS: Leaves, bark, fruits, seeds, roots and rhizomes from collected plants were successively extracted with hexane, ethyl acetate and ethanol. The corresponding 54 extracts were tested against six human pathogenic bacteria by broth microdilution assay. The antibacterial mode of actions of phytoconstituents and their synergistic effect with vancomycin and cefotaxime towards MRSA was determined by time-killing assay and synergistic interaction assay, respectively. RESULTS AND DISCUSSION: Hexane extract of bark of Cinnamomum cassia (L.) J. Presl. (Lauraceae) inhibited the growth of MRSA, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae and Acinetobacter baumannii with MIC values below 100 µg/mL. From this plant, cinnamaldehyde evoked at 4 × MIC in 1 h an irreversible decrease of MRSA count Log10 (CFU/mL) from 6 to 0, and was synergistic with vancomycin for MRSA with fractional inhibitory concentration index of 0.3. CONCLUSIONS: Our study provides evidence that the medicinal plants in Bangladesh have high potential to improve the current treatment strategies for bacterial infection.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Medicine, Traditional , Plant Extracts/pharmacology , Anti-Bacterial Agents/isolation & purification , Bacteria/growth & development , Bangladesh , Cefotaxime/pharmacology , Drug Resistance, Bacterial , Drug Synergism , Humans , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/growth & development , Microbial Sensitivity Tests , Phytotherapy , Plant Extracts/isolation & purification , Plants, Medicinal , Time Factors , Vancomycin/pharmacology
10.
Fitoterapia ; 125: 161-173, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29355749

ABSTRACT

Cardamonin is a natural chalcone that has been shown to exhibit high anticancer activity. In an attempt to discover analogues of cardamonin with enhanced anticancer activity, 19 analogues were synthesized and tested against A549 and HK1 cell lines. Results of the MTS cell viability assay showed that several derivatives possessed cytotoxic activities that were several-fold more potent than cardamonin. SAR analysis showed the importance of the ketone and alkene groups for bioactivity, while substituting cardamonin's phenolic groups with more polar moieties resulted in activity enhancement. As part of the SAR study and further exploration of chemical space, the effect of metal coordination on cytotoxicity was also investigated, but it was only possible to successfully obtain the Cu (II) complex of cardamonin (19). Compound 19 was the most active analogue possessing IC50 values of 13.2µM and 0.7µM against A549 and HK1 cells, corresponding to a 5- and 32-fold increase in activity, respectively. It was also able to significantly inhibit the migration of A549 and HK1 cells. Further mode of action studies have shown that the most active analogue, 19, induced DNA damage resulting in G2/M-phase cell- cycle arrest in both cell lines. These events further led to the induction of apoptosis by the compound via caspase-3/7 and caspase-9 activation, PARP cleavage and downregulation of Mcl-1 expression. Moreover, 19 inhibited the expression levels of p-mTOR and p-4EBP1, which indicated that it exerted its anticancer activity, at least in part, via inhibition of the mTOR signalling pathway.


Subject(s)
Apoptosis/drug effects , Caspases/metabolism , Chalcones/pharmacology , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism , Cell Line, Tumor , Chalcones/chemical synthesis , Humans , Molecular Structure , Structure-Activity Relationship
11.
J Ethnopharmacol ; 198: 91-97, 2017 Feb 23.
Article in English | MEDLINE | ID: mdl-28049063

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Pericampylus glaucus is a climbing plant found across Asia and used in traditional medicine to treat a number of conditions including splenomegaly, fever, cough, laryngitis, pulmonary disease, asthma, headache, hair loss, snake bite, boar bite, factures, boils, tumours, tetanus, rheumatic pain, itches and eclampsia. AIM OF THE STUDY: To test extracts of P. glaucus in a number of bioassays and determine the legitimacy of its traditional use. MATERIALS AND METHODS: The stems, leaves, roots and fruits of P. glaucus were collected and extracted sequentially with hexane, chloroform and ethanol, respectively. The anti-inflammatory activity was assessed by testing the ability of the extracts to inhibit heat induced protein denaturation, stabilise human red blood cells under hypotonic stress and by testing the inhibitory activity of the extracts against cyclooxygenases 1 and 2. Cytotoxicity was tested using the human lung epithelial cell line MRC-5 and nasopharangeal carcinoma cell line HK1 in the MTT assay. RESULTS: Many of the samples showed an ability to prevent heat induced protein denaturation, as well as prevent lysis of red blood cells. Most of the extracts demonstrated inhibitory activity towards both of the COX enzymes. The ethanol extracts tended to demonstrate greater toxicity than other extracts, with some of the other extracts significantly enhancing growth and metabolism of the cells. CONCLUSION: The benefit of P. glaucus for the treatment of diseases related to inflammation and cancer was supported by the in vitro assays adopted in this study.


Subject(s)
Alkaloids/pharmacology , Anti-Inflammatory Agents/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Drugs, Chinese Herbal/pharmacology , Nasopharyngeal Neoplasms/drug therapy , Plant Extracts/pharmacology , Plants, Medicinal , Cell Line, Tumor , Cyclooxygenase Inhibitors/pharmacology , Erythrocyte Membrane/drug effects , Humans , Nasopharyngeal Neoplasms/pathology , Protein Denaturation
12.
J Altern Complement Med ; 16(7): 769-85, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20590477

ABSTRACT

BACKGROUND: Recent years have witnessed a continual decline of medicinal plant availability as well as a decline in the numbers of tribal traditional healers and their medicinal knowledge in Bangladesh. Yet these medicinal plants used for treatment of various ailments by tribal traditional healers can be of considerable interest to modern science in their potential for discovery of lead compounds, which can lead to better drugs. OBJECTIVE: The primary objective of the present study was to conduct an ethnomedicinal survey among the traditional healers of the Harbang clan (Tripura tribe) of Mirsharai to gain information on medicinal plants used to treat various ailments with the further objective of evaluating the efficacy of these medicinal plants when compared with known phytochemicals and modern-research-based pharmacologic activity studies on these plants. METHODS: Semistructured interviews and guided field-walk methods were used to gather information on medicinal plants used by the Tripura traditional healers. Along with plants, information was also collected on plant parts used, formulations, and dosages. Information on phytochemicals as well as pharmacologic activity studies on these plants (if any) was obtained from several data bases. SETTING: The survey was conducted among the traditional healers of the Harbang clan (Tripura tribe) residing in Mirsharai, Chittagong district, Bangladesh. RESULTS: The traditional healers of the Tripura tribal community of Mirsharai use 64 plant species distributed into 38 families for treatment of various ailments. CONCLUSIONS: Information on phytochemicals and pharmacologic activity studies conducted on a number of the plants (used by Tripura tribal healers) by modern scientific methods validated the traditional use of a number of plants and suggested that they can form a good source of newer drugs. The survey further highlighted the importance of gathering such ethnomedicinal information for effective conservation of tribal medicinal knowledge and medicinally important plant species.


Subject(s)
Medicine, Traditional , Phytotherapy , Plant Extracts , Plants, Medicinal , Adult , Bangladesh , Data Collection , Humans , Interviews as Topic , Middle Aged , Plant Extracts/chemistry , Plant Extracts/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...