Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 1481-1484, 2020 07.
Article in English | MEDLINE | ID: mdl-33018271

ABSTRACT

Long scan duration remains a challenge for high-resolution MRI. Deep learning has emerged as a powerful means for accelerated MRI reconstruction by providing data-driven regularizers that are directly learned from data. These data-driven priors typically remain unchanged for future data in the testing phase once they are learned during training. In this study, we propose to use a transfer learning approach to fine-tune these regularizers for new subjects using a self-supervision approach. While the proposed approach can compromise the extremely fast reconstruction time of deep learning MRI methods, our results on knee MRI indicate that such adaptation can substantially reduce the remaining artifacts in reconstructed images. In addition, the proposed approach has the potential to reduce the risks of generalization to rare pathological conditions, which may be unavailable in the training data.


Subject(s)
Algorithms , Neural Networks, Computer , Magnetic Resonance Imaging , Physics , Radionuclide Imaging
2.
Proc IEEE Int Symp Biomed Imaging ; 2019: 1692-1695, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31893013

ABSTRACT

Coronary MRI is a non-invasive radiation-free imaging tool for the diagnosis of coronary artery disease. One of its limitations is the long scan time, due to the need for high resolution imaging in the presence of respiratory and cardiac motions. Machine learning (ML) methods have been recently utilized to accelerate MRI. In particular, a scan-specific ML technique, called Robust Artifical-neural-network for k-space Interpolation (RAKI) has shown promise in cardiac MRI. However, it requires uniform undersampling. In this study, we sought to extend this approach to arbitrary sampling patterns, using coil self-consistency. This technique, called SPIRiT-RAKI, utilizes scan-specific convolutional neural networks to nonlinearly enforce coil self-consistency. Additionally, regularization terms can also be incorporated. SPIRiT-RAKI was used to accelerate right coronary MRI. Reconstructions were compared to SPIRiT for different undersampling patterns and acceleration rates. Results show SPIRiT-RAKI reduces residual aliasing and blurring artifacts compared to SPIRiT.

3.
IEEE Trans Biomed Eng ; 65(10): 2365-2374, 2018 10.
Article in English | MEDLINE | ID: mdl-30047869

ABSTRACT

OBJECTIVE: Adaptive beamformer methods that have been extensively used for functional brain imaging using EEG/MEG (magnetoencephalography) signals are sensitive to model mismatches. We propose a robust minimum variance beamformer (RMVB) technique, which explicitly incorporates the uncertainty of the lead field matrix into the estimation of spatial-filter weights that are subsequently used to perform the imaging. METHODS: The uncertainty of the lead field is modeled by ellipsoids in the RMVB method; these hyperellipsoids (ellipsoids in higher dimensions) define regions of uncertainty for a given nominal lead field vector. These ellipsoids are estimated empirically by sampling lead field vectors surrounding each point of the source space, or more generally by building several forward models for the source space. Once these uncertainty regions (ellipsoids) are estimated, they are used to perform the source-imaging task. Computer simulations are conducted to evaluate the performance of the proposed RMVB technique. RESULTS: Our results show that robust beamformers can outperform conventional beamformers in terms of localization error, recovering source dynamics, and estimation of the underlying source extents when uncertainty in the lead field matrix is properly determined and modeled. CONCLUSION: The RMVB can be substituted for conventional beamformers, especially in applications where source imaging is performed off-line, and computational speed and complexity are not of major concern. SIGNIFICANCE: A high-quality source imaging can be utilized in various applications, such as determining the epileptogenic zone in medically intractable epilepsy patients or estimating the time course of activity, which is a required step for computing the functional connectivity of brain networks.


Subject(s)
Brain Mapping/methods , Brain/diagnostic imaging , Image Processing, Computer-Assisted/methods , Signal Processing, Computer-Assisted , Algorithms , Computer Simulation , Electroencephalography/methods , Humans , Magnetoencephalography/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...