Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Opt Lett ; 42(15): 2878-2881, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-28957197

ABSTRACT

We design and demonstrate, to the best of our knowledge, the first whispering gallery germanium-on-silicon photodetector with evanescent coupling from a silicon bus waveguide in a CMOS-compatible process. The small footprint (63.6 µm2), high responsivity (∼1.04 A/W at 1530 nm), low bias voltage (-1 V), low dark current (2.03 nA), and large optoelectric bandwidth (32.9 GHz) of the detector enable simultaneous wavelength filtering and power detection, ideal for handling large network data traffic. In addition, with the resonant nature of the detector, we also optimize the design to enable long-wavelength detection, achieving a separate device with a detection range of up to 1630 nm with a >0.45 A/W responsivity, making it an important building block for optical communication networks.

2.
Opt Express ; 25(12): 13705-13713, 2017 Jun 12.
Article in English | MEDLINE | ID: mdl-28788913

ABSTRACT

We report ultra-narrow-linewidth erbium-doped aluminum oxide (Al2O3:Er3+) distributed feedback (DFB) lasers with a wavelength-insensitive silicon-compatible waveguide design. The waveguide consists of five silicon nitride (SiNx) segments buried under silicon dioxide (SiO2) with a layer Al2O3:Er3+ deposited on top. This design has a high confinement factor (> 85%) and a near perfect (> 98%) intensity overlap for an octave-spanning range across near infra-red wavelengths (950-2000 nm). We compare the performance of DFB lasers in discrete quarter phase shifted (QPS) cavity and distributed phase shifted (DPS) cavity. Using QPS-DFB configuration, we obtain maximum output powers of 0.41 mW, 0.76 mW, and 0.47 mW at widely spaced wavelengths within both the C and L bands of the erbium gain spectrum (1536 nm, 1566 nm, and 1596 nm). In a DPS cavity, we achieve an order of magnitude improvement in maximum output power (5.43 mW) and a side mode suppression ratio (SMSR) of > 59.4 dB at an emission wavelength of 1565 nm. We observe an ultra-narrow linewidth of ΔνDPS = 5.3 ± 0.3 kHz for the DPS-DFB laser, as compared to ΔνQPS = 30.4 ± 1.1 kHz for the QPS-DFB laser, measured by a recirculating self-heterodyne delayed interferometer (R-SHDI).

3.
Biosens Bioelectron ; 80: 682-690, 2016 Jun 15.
Article in English | MEDLINE | ID: mdl-26826877

ABSTRACT

We present the systematic design, fabrication, and characterization of a multiplexed label-free lab-on-a-chip biosensor using silicon nitride (SiN) microring resonators. Sensor design is addressed through a systematic approach that enables optimizing the sensor according to the specific noise characteristics of the setup. We find that an optimal 6 dB undercoupled resonator consumes 40% less power in our platform to achieve the same limit-of-detection as the conventional designs using critically coupled resonators that have the maximum light-matter interaction. We lay out an optimization framework that enables the generalization of our method for any type of optical resonator and noise characteristics. The device is fabricated using a CMOS-compatible process, and an efficient swabbing lift-off technique is introduced for the deposition of the protective oxide layer. This technique increases the lift-off quality and yield compared to common lift-off methods based on agitation. The complete sensor system, including microfluidic flow cell and surface functionalization with glycan receptors, is tested for the multiplexed detection of Aleuria Aurantia Lectin (AAL) and Sambucus Nigra Lectin (SNA). Further analysis shows that the sensor limit of detection is 2 × 10(-6) RIU for bulk refractive index, 1 pg/mm(2) for surface-adsorbed mass, and ∼ 10 pM for the glycan/lectins studied here.


Subject(s)
Biosensing Techniques , Lectins/isolation & purification , Polysaccharides/isolation & purification , Ascomycota/chemistry , Lectins/chemistry , Polysaccharides/chemistry , Sambucus nigra/chemistry , Silicon Compounds/chemistry
4.
Opt Express ; 22(10): 12226-37, 2014 May 19.
Article in English | MEDLINE | ID: mdl-25051584

ABSTRACT

We demonstrate monolithic 160-µm-diameter rare-earth-doped microring lasers using silicon-compatible methods. Pump light injection and laser output coupling are achieved via an integrated silicon nitride waveguide. We measure internal quality factors of up to 3.8 × 105 at 980 nm and 5.7 × 105 at 1550 nm in undoped microrings. In erbium- and ytterbium-doped microrings we observe single-mode 1.5-µm and 1.0-µm laser emission with slope efficiencies of 0.3 and 8.4%, respectively. Their small footprints, tens of microwatts output powers and sub-milliwatt thresholds introduce such rare-earth-doped microlasers as scalable light sources for silicon-based microphotonic devices and systems.

5.
Opt Lett ; 39(11): 3106-9, 2014 Jun 01.
Article in English | MEDLINE | ID: mdl-24875988

ABSTRACT

On-chip, high-power, erbium-doped distributed feedback lasers are demonstrated in a CMOS-compatible fabrication flow. The laser cavities consist of silicon nitride waveguide and grating features, defined by wafer-scale immersion lithography and an erbium-doped aluminum oxide layer deposited as the final step in the fabrication process. The large mode size lasers demonstrate single-mode continuous wave operation with a maximum output power of 75 mW without any thermal damage. The laser output power does not saturate at high pump intensities and is, therefore, capable of delivering even higher on-chip signals if a stronger pump is utilized. The amplitude noise of the laser is investigated and the laser is shown to be stable and free from self-pulsing when the pump power is sufficiently above threshold.

6.
Opt Lett ; 39(2): 367-70, 2014 Jan 15.
Article in English | MEDLINE | ID: mdl-24562148

ABSTRACT

In this Letter, we demonstrate an 8×8 apodized silicon photonic phased array where the emission from each of 64 nanoantennas was tailored to exhibit Gaussian-shaped intensity distributions in the near field so that the sidelobes of the generated far-field optical beam were suppressed compared to that of a uniform phased array. With the aid of the 72 thermo-optic phase tuners directly integrated within the phased array, we dynamically shaped the generated optical beam in the far field in a variety of ways.

7.
Opt Lett ; 39(4): 965-8, 2014 Feb 15.
Article in English | MEDLINE | ID: mdl-24562253

ABSTRACT

In this Letter, we report on the first integrated four-port polarizing beam splitter. The device operates on the principle of mode evolution and was implemented in a silicon-on-insulator silicon photonics platform and fabricated on a 300 mm CMOS line using 193 nm optical immersion lithography. The adiabatic transition forming of the structure enabled over a 150 nm bandwidth from λ~1350 to λ~1500 nm, achieving a cross-talk level below -10 dB over the entire band.

8.
Opt Lett ; 38(20): 4002-4, 2013 Oct 15.
Article in English | MEDLINE | ID: mdl-24321905

ABSTRACT

We report on an integrated λ/4-shifted Bragg grating array using a wafer-scale complementary metal-oxide semiconductor (CMOS) compatible process with silicon-nitride waveguides. A sidewall grating was used to simplify the fabrication process, and a sampled Bragg grating with equivalent phase-shift structure was employed to achieve an accurate λ/4 phase shift. A four-channel λ/4-shifted Bragg grating array with highly uniform channel spacing was demonstrated with a measured channel spacing variation below 10 pm (1.25 GHz). The high channel-spacing uniformity and the CMOS-compatibility of the demonstrated device hold promise for integrated distributed feedback laser arrays for various silicon photonic applications.

9.
Opt Express ; 21(5): 5391-400, 2013 Mar 11.
Article in English | MEDLINE | ID: mdl-23482110

ABSTRACT

A new method for measuring waveguide propagation loss in silicon nanowires is presented. This method, based on the interplay between traveling ring modes and standing wave modes due to back-scattering from edge roughness, is accurate and can be used for on wafer measurement of test structures. Examples of loss measurements and fitting are reported.

10.
Nature ; 493(7431): 195-9, 2013 Jan 10.
Article in English | MEDLINE | ID: mdl-23302859

ABSTRACT

Electromagnetic phased arrays at radio frequencies are well known and have enabled applications ranging from communications to radar, broadcasting and astronomy. The ability to generate arbitrary radiation patterns with large-scale phased arrays has long been pursued. Although it is extremely expensive and cumbersome to deploy large-scale radiofrequency phased arrays, optical phased arrays have a unique advantage in that the much shorter optical wavelength holds promise for large-scale integration. However, the short optical wavelength also imposes stringent requirements on fabrication. As a consequence, although optical phased arrays have been studied with various platforms and recently with chip-scale nanophotonics, all of the demonstrations so far are restricted to one-dimensional or small-scale two-dimensional arrays. Here we report the demonstration of a large-scale two-dimensional nanophotonic phased array (NPA), in which 64 × 64 (4,096) optical nanoantennas are densely integrated on a silicon chip within a footprint of 576 µm × 576 µm with all of the nanoantennas precisely balanced in power and aligned in phase to generate a designed, sophisticated radiation pattern in the far field. We also show that active phase tunability can be realized in the proposed NPA by demonstrating dynamic beam steering and shaping with an 8 × 8 array. This work demonstrates that a robust design, together with state-of-the-art complementary metal-oxide-semiconductor technology, allows large-scale NPAs to be implemented on compact and inexpensive nanophotonic chips. In turn, this enables arbitrary radiation pattern generation using NPAs and therefore extends the functionalities of phased arrays beyond conventional beam focusing and steering, opening up possibilities for large-scale deployment in applications such as communication, laser detection and ranging, three-dimensional holography and biomedical sciences, to name just a few.

11.
Opt Lett ; 35(20): 3462-4, 2010 Oct 15.
Article in English | MEDLINE | ID: mdl-20967100

ABSTRACT

We present a method for eliminating the temperature dependence of the resonance wavelength in high-Q silicon-based microdisk resonators by using a polymer cladding with a negative thermo-optic coefficient. Design requirements for athermal performance are derived based on theory and simulation, and their validity is experimentally verified.

12.
J Nanosci Nanotechnol ; 10(3): 1508-24, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20355540

ABSTRACT

We report our recent progress in designing and developing traveling-wave microresonators on CMOS compatible substrate, with a focus on ultra-compact Si-based microring and microdisk resonators in the visible and near infrared wavelengths with ultra-high Q and small mode volume, suitable for strong light-matter interaction. The performance of these resonators is discussed, and the design and fabrication challenges and solutions to achieve efficient coupling from the bus-waveguide to the resonator is mentioned. Coupled-resonator architectures for the design of filters are analyzed and theoretical and experimental results for the flat-band filters with wide bandwidth and large free spectral range are presented. Furthermore, by using a detailed thermal model we demonstrate optimized microresonator structures on semiconductor substrates with improved thermal conductivity that can sustain a high circulating optical intensity at the resonance wavelength, which is particularly useful for nonlinear optics and optical signal processing applications. Finally, we address some of the applications and future prospects of such microresonators in CMOS-compatible substrate technology, including portable multi-purpose bio/chemical sensing systems, reconfigurable optical signal processing modules and chip-scale optical amplifiers and lasers.

13.
Opt Express ; 17(19): 17060-9, 2009 Sep 14.
Article in English | MEDLINE | ID: mdl-19770924

ABSTRACT

We demonstrate the feasibility of forming a compact integrated photonic spectrometer for operation in the visible wavelength range using the dispersive properties of a planar photonic crystal structure fabricated in silicon nitride. High wavelength resolution and compact device sizes in these spectrometers are enabled by combining superprism effect, negative diffraction effect, and negative refraction effect in a 45 degree rotated square lattice photonic crystal. Our experimental demonstration shows 1.2 nm wavelength resolution in a 70 microm by 130 microm photonic crystal structure with better performance than alternative structures for on-chip spectroscopy, confirming the unique capability of the proposed approach to realize compact integrated spectrometers.

14.
Opt Express ; 17(17): 14543-51, 2009 Aug 17.
Article in English | MEDLINE | ID: mdl-19687933

ABSTRACT

High quality factor (Q approximately 3.4 x 10(6)) microdisk resonators are demonstrated in a Si(3)N(4) on SiO(2) platform at 652-660 nm with integrated in-plane coupling waveguides. Critical coupling to several radial modes is demonstrated using a rib-like structure with a thin Si(3)N(4) layer at the air-substrate interface to improve the coupling.

15.
Opt Lett ; 33(22): 2608-10, 2008 Nov 15.
Article in English | MEDLINE | ID: mdl-19015683

ABSTRACT

In this work we present a systematic approach to increase the low-loss guiding bandwidth of PCWs by reducing the interaction of low-group-velocity modes with the surrounding photonic crystal. By this method the low-loss bandwidth of a W1 PCW is increased from 2.5 nm to 12 nm. We also present a detailed analysis of the transmission properties of W1 PCWs and elaborate on the coupling to TM-like guided modes present in the low-loss transmission bandwidth of this device.

SELECTION OF CITATIONS
SEARCH DETAIL
...