Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Gastrointest Cancer ; 54(3): 937-950, 2023 Sep.
Article in English | MEDLINE | ID: mdl-36534304

ABSTRACT

BACKGROUND: The conventional treatment for patients with locally advanced colorectal tumors is preoperative chemo-radiotherapy (PCRT) preceding surgery. This treatment strategy has some long-term side effects, and some patients do not respond to it. Therefore, an evaluation of biomarkers that may help predict patients' response to PCRT is essential. METHODS: We took advantage of genetic algorithm to search the space of possible combinations of features to choose subsets of genes that would yield convenient performance in differentiating PCRT responders from non-responders using a logistic regression model as our classifier. RESULTS: We developed two gene signatures; first, to achieve the maximum prediction accuracy, the algorithm yielded 39 genes, and then, aiming to reduce the feature numbers as much as possible (while maintaining acceptable performance), a 5-gene signature was chosen. The performance of the two gene signatures was (accuracy = 0.97 and 0.81, sensitivity = 0.96 and 0.83, and specificity = 86 and 0.77) using a logistic regression classifier. Through analyzing bias and variance decomposition of the model error, we further investigated the involved genes by discovering and validating another 28-gene signature which possibly points towards two different sub-systems involved in the response of the patients to treatment. CONCLUSIONS: Using genetic algorithm as our gene selection method, we have identified two groups of genes that can differentiate PCRT responders from non-responders in patients of the studied dataset with considerable performance. IMPACT: After passing standard requirements, our gene signatures may be applicable as a robust and effective PCRT response prediction tool for colorectal cancer patients in clinical settings and may also help future studies aiming to further investigate involved pathways gain a clearer picture for the course of their research.


Subject(s)
Rectal Neoplasms , Humans , Rectal Neoplasms/therapy , Rectal Neoplasms/drug therapy , Rectum/pathology , Chemoradiotherapy/methods , Biomarkers , Algorithms , Neoadjuvant Therapy , Treatment Outcome
2.
Heliyon ; 8(12): e11931, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36478831

ABSTRACT

Robotic or prosthetic organs are designed to have the maximum similarity to human organs. This paper aims to improve robotic hand control via an adaptive Fuzzy-PI controller using EMG signals. The data is collected from the FDS and FPL muscles of the forearm of five individuals who performed eight movements. Then, appropriate filters are used to eliminate the noise of the signals, and MAV, VAR, and SE features are extracted. Based on MAV and VAR, classification is carried out using DA, KNN, and SVM. With an average accuracy, specificity, and sensitivity of 90.69%, 94.64%, and 62.10%, SVM is a better choice for movement detection. Following the movement detection by SVM, an appropriate reference signal is sent to the controller. The reference signal is the angle change of the fingers during the movement. All the eight gestures are modeled in a new way through these angles. The adaptive fuzzy-PI controller is used to control a robotic hand model with fifteen degrees of freedom. It has the advantages of learning from human experiences and adapting to environmental changes. The performance of the controller is evaluated in two ways. One is the comparison of the fuzzy-PI with the PI by RMSE. The average RMSE for eight movements using the fuzzy-PI is 1.6067, and for the PI, 5.0082. These results show that the fuzzy-PI controller performs better than the PI. Another new evaluation way presented in this paper is comparing the EMG signal features with the robotic hand movement signal features in terms of RMSE. The small RMSE values indicate that the EMG signal and robotic hand movement data features are significantly similar. Therefore, it can be concluded that the robotic hand controlled by the proposed controller is notably identical to the human hand.

SELECTION OF CITATIONS
SEARCH DETAIL
...