Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Life (Basel) ; 13(7)2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37511989

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) primarily affects the respiratory system but can also lead to neurological complications. Among COVID-19 patients, the endothelium is considered the Achilles heel. A variety of endothelial dysfunctions may result from SARS-CoV-2 infection and subsequent endotheliitis, such as altered vascular tone, oxidative stress, and cytokine storms. The cerebral hemodynamic impairment that is caused is associated with a higher probability of severe disease and poor outcomes in patients with COVID-19. This review summarizes the most relevant literature on the role of vasomotor reactivity (VMR) in COVID-19 patients. An overview of the research articles is presented. Most of the studies have supported the hypothesis that endothelial dysfunction and cerebral VMR impairment occur in COVID-19 patients. Researchers believe these alterations may be due to direct viral invasion of the brain or indirect effects, such as inflammation and cytokines. Recently, researchers have concluded that viruses such as the Human Herpes Virus 8 and the Hantavirus predominantly affect endothelial cells and, therefore, affect cerebral hemodynamics. Especially in COVID-19 patients, impaired VMR is associated with a higher risk of severe disease and poor outcomes. Using VMR, one can gain valuable insight into a patient's disease progression and make more informed decisions regarding appropriate treatment options. A new pandemic may develop with the COVID-19 virus or other viruses, making it essential that healthcare providers and researchers remain focused on developing new strategies for improving survival in such patients, particularly those with cerebrovascular risk factors.

2.
Biomed Pharmacother ; 153: 113369, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35780615

ABSTRACT

Medicine/nanotechnology as a new and applicable technique according to drug delivery systems has gained great consideration for cancer treatment. Polysaccharides including, cellulose, ß-cyclodextrin and sodium carboxymethyl cellulose and chitosan as natural bio-materials, are appropriate candidates for designing and formulations of these nanosystems because of the exceptional advantages such as bio-compatibility, bio-degradability, non-toxicity, and gelling characteristics. An intelligent drug delivery platform based on these hybrids nowadays is developed, which can be used for dual-responsive dual-drug delivery. Nanotechnology accompany with biological molecules has been carefully considered to decrease the drawbacks of conventional cancer treatments. Consequently, this review is intended to state and investigate on the latest development on the combination treatment of platforms based on the hybrids of anticancer drugs/nanoparticles/Polysaccharides in the fields of biomedical therapeutics and cancer therapy owing to the bio-compatibility, great surface area, good chemical and mechanical features, the challenges and future perspectives are reported as well.


Subject(s)
Chitosan , Leukemia , Nanoparticles , beta-Cyclodextrins , Carboxymethylcellulose Sodium/chemistry , Chitosan/chemistry , Drug Carriers/chemistry , Drug Delivery Systems/methods , Humans , Nanoparticles/chemistry , Sodium
3.
Neurotherapeutics ; 17(2): 539-562, 2020 04.
Article in English | MEDLINE | ID: mdl-32367476

ABSTRACT

Cardiac arrest (CA) afflicts ~ 550,000 people each year in the USA. A small fraction of CA sufferers survive with a majority of these survivors emerging in a comatose state. Many CA survivors suffer devastating global brain injury with some remaining indefinitely in a comatose state. The pathogenesis of global brain injury secondary to CA is complex. Mechanisms of CA-induced brain injury include ischemia, hypoxia, cytotoxicity, inflammation, and ultimately, irreversible neuronal damage. Due to this complexity, it is critical for clinicians to have access as early as possible to quantitative metrics for diagnosing injury severity, accurately predicting outcome, and informing patient care. Current recommendations involve using multiple modalities including clinical exam, electrophysiology, brain imaging, and molecular biomarkers. This multi-faceted approach is designed to improve prognostication to avoid "self-fulfilling" prophecy and early withdrawal of life-sustaining treatments. Incorporation of emerging dynamic monitoring tools such as diffuse optical technologies may provide improved diagnosis and early prognostication to better inform treatment. Currently, targeted temperature management (TTM) is the leading treatment, with the number of patients needed to treat being ~ 6 in order to improve outcome for one patient. Future avenues of treatment, which may potentially be combined with TTM, include pharmacotherapy, perfusion/oxygenation targets, and pre/postconditioning. In this review, we provide a bench to bedside approach to delineate the pathophysiology, prognostication methods, current targeted therapies, and future directions of research surrounding hypoxic-ischemic brain injury (HIBI) secondary to CA.


Subject(s)
Heart Arrest/complications , Hypoxia-Ischemia, Brain , Animals , Humans , Hypothermia, Induced/methods , Hypoxia-Ischemia, Brain/diagnosis , Hypoxia-Ischemia, Brain/etiology , Hypoxia-Ischemia, Brain/therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...