Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Plant Biol ; 24(1): 269, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38605338

ABSTRACT

Within a few decades, the species habitat was reshaped at an alarming rate followed by climate change, leading to mass extinction, especially for sensitive species. Species distribution models (SDMs), which estimate both present and future species distribution, have been extensively developed to investigate the impacts of climate change on species distribution and assess habitat suitability. In the West Asia essential oils of T. daenensis and T. kotschyanus include high amounts of thymol and carvacrol and are commonly used as herbal tea, spice, flavoring agents and medicinal plants. Therefore, this study aimed to model these Thymus species in Iran using the MaxEnt model under two representative concentration pathways (RCP 4.5 and RCP 8.5) for the years 2050 and 2070. The findings revealed that the mean temperature of the warmest quarter (bio10) was the most significant variable affecting the distribution of T. daenensis. In the case of T. kotschyanus, slope percentage was the primary influencing factor. The MaxEnt modeling also demonstrated excellent performance, as indicated by all the Area Under the Curve (AUC) values exceeding 0.9. Moreover, based on the projections, the two mentioned species are expected to undergo negative area changes in the coming years. These results can serve as a valuable achievement for developing adaptive management strategies aimed at enhancing protection and sustainable utilization in the context of global climate change.


Subject(s)
Climate Change , Ecosystem , Iran , Extinction, Biological , Temperature
2.
Integr Environ Assess Manag ; 20(4): 1046-1059, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38334016

ABSTRACT

The decline of habitats supporting medicinal plants is a consequence of climate change and human activities. In the Middle East, Ferulago angulata, Ferulago carduchorum, and Ferulago phialocarpa are widely recognized for their culinary, medicinal, and economic value. Therefore, this study models these Ferulago species in Iran using the MaxEnt model under two representative concentration pathways (RCP4.5 and RCP8.5) for 2050 and 2070. The objective was to identify the most important bioclimatic (n = 6), edaphic (n = 4), and topographic (n = 3) variables influencing their distribution and predict changes under various climate scenarios. Findings reveal slope percentage as the most significant variable for F. angulata and F. carduchorum, while solar radiation was the primary variable for F. phialocarpa. MaxEnt modeling demonstrated good to excellent performance, as indicated by all the area under the curve values exceeding 0.85. Projections suggest negative area changes for F. angulata and F. carduchorum (i.e., predictions under RCP4.5 for 2050 and 2070 indicate -34.0% and -37.8% for F. phialocarpa, and -0.3% and -6.2% for F. carduchorum; additionally, predictions under RCP 8.5 for 2050 and 2070 show -39.0% and -52.2% for F. phialocarpa, and -1.33% and -9.8% for F. carduchorum), while for F. phialocarpa, a potential habitat increase (i.e., predictions under RCP4.5 for 2050 and 2070 are 23.4% and 11.2%, and under RCP 8.5 for 2050 and 2070 are 64.4% and 42.1%) is anticipated. These insights guide adaptive management strategies, emphasizing conservation and sustainable use amid global climate change. Special attention should be paid to F. angulata and F. carduchorum due to anticipated habitat loss. Integr Environ Assess Manag 2024;20:1046-1059. © 2024 SETAC.


Subject(s)
Climate Change , Ecosystem , Iran , Environmental Monitoring/methods , Models, Theoretical
3.
Sci Rep ; 14(1): 3641, 2024 02 13.
Article in English | MEDLINE | ID: mdl-38351276

ABSTRACT

Over the course of a few decades, climate change has caused a rapid and alarming reshaping of species habitats, resulting in mass extinction, particularly among sensitive species. In order to investigate the effects of climate change on species distribution and assess habitat suitability, researchers have developed species distribution models (SDMs) that estimate present and future species distribution. In West Asia, thyme species such as T. fedtschenkoi, T. pubescens, and T. transcaucasicus are rich in thymol and carvacrol, and are commonly used as herbal tea, spice, flavoring agents, and medicinal plants. This study aims to model the distribution of these Thymus species in Iran using the MaxEnt model under two representative concentration pathways (RCP 4.5 and RCP 8.5) for the years 2050 and 2070. The objective is to identify the crucial bioclimatic (n = 5), edaphic (n = 1), and topographic (n = 3) variables that influence their distribution and predict how their distribution might change under various climate scenarios. The findings reveal that the most significant variable affecting T. fedtschenkoi and T. pubescens is altitude, while soil organic carbon content is the primary factor influencing the distribution of T. transcaucasicus. The MaxEnt modeling demonstrates excellent performance, as indicated by all the area under the curve (AUC) values exceeding 0.9. Based on the projections, it is expected that these three thyme species will experience negative area changes in the coming years. These results can serve as a valuable tool for developing adaptive management strategies aimed at enhancing protection and sustainable utilization in the context of global climate change. Special attention should be given to conserving T. fedtschenkoi, T. pubescens, and T. transcaucasicus due to their significant habitat loss in the future.


Subject(s)
Climate Change , Thymus Plant , Iran , Carbon , Soil , Ecosystem
4.
J Biophotonics ; 17(1): e202300279, 2024 01.
Article in English | MEDLINE | ID: mdl-37703421

ABSTRACT

We demonstrate a portable, compact system to perform absorption-based enzymatic assays at a visible wavelength of 639 nm on a photonic waveguide-based sensor chip, suitable for lab-on-a-chip applications. The photonic design and fabrication of the sensor are described, and a detailed overview of the portable measurement system is presented. In this publication, we use an integrated photonic waveguide-based absorbance sensor to run a full enzymatic assay. An assay to detect creatinine in plasma is simultaneously performed on both the photonic sensor on the portable setup and on a commercial microplate reader for a clinically relevant creatinine concentration range. We observed a high correlation between the measured waveguide propagation loss and the optical density measurement from the plate reader and measured a limit-of-detection of 4.5 µM creatinine in the sensor well, covering the relevant clinical range for creatinine detection.


Subject(s)
Point-of-Care Systems , Running , Creatinine , Equipment Design , Optics and Photonics
5.
Integr Environ Assess Manag ; 18(3): 697-708, 2022 May.
Article in English | MEDLINE | ID: mdl-34617662

ABSTRACT

The demand for food resources is increasing quickly because human populations are growing; therefore, food security may become one of the largest human challenges of this century. Crop wild relatives (CWRs) are the most valuable plant genetic resources (PGR) for the conservation of genetic diversity in crops. However, climate change is an added pressure on biodiversity, particularly on this valuable group of plants. It is predicted that more than 50% of this group may be lost by 2055 as a result of the effects of climate change. Iran ranks high in the world in its conservation priorities for CWRs. This study investigates the impacts of climate change on Aegilops L. as important CWRs. MaxEnt was applied to predict the spatial distribution of seven Aegilops species under different climatic scenarios (RCP 2.6 and RCP 8.5) of 2050 and 2080. According to the findings, all species exhibited reduction or expansion responses under all of the above-mentioned climatic scenarios. However, the range change was negative for some species (i.e., Aegilops columnaris, Aegilops cylindrica, Aegilops speltoides, Aegilops tauschii [in all scenarios of 2050 and 2080], and Aegilops kotschyi [RCP 2.6 2050 and 2080]), and positive for others (i.e., Aegilops crassa, Aegilops triuncialis [in all scenarios of 2050 and 2080], and Aegilops kotschyi [RCP 8.5 2050 and 2080]). The results of this study emphasize the need for conservation plans for the country's genetic resources, including regular monitoring and assessment of ecological and demographic changes. Integr Environ Assess Manag 2022;18:697-708. © 2021 SETAC.


Subject(s)
Aegilops , Climate Change , Biodiversity , Crops, Agricultural , Food Security , Humans , Iran , Poaceae
6.
Appl Opt ; 56(29): 8055-8060, 2017 Oct 10.
Article in English | MEDLINE | ID: mdl-29047666

ABSTRACT

Compact wavelength splitters based on angled multimode interferometers (AMMIs) on silicon nitride platforms working in visible lights are reported for fluorescence sensing applications. A diplexer and triplexer with different footprints are designed and experimentally demonstrated. The diplexer and triplexer have the insertion loss of ∼1.7 and ∼2.7 dB/channel with cross talks of less than -22 dB and -17 dB on target wavelengths, respectively. These splitters are used to distinguish the signals collected from two fluorescent dyes that give different emission spectra when excited with an excitation source, due to their different Stokes shifts. In the case of the triplexer, a third port is to collect the excitation light, both to monitor the remaining excitation power and to reduce the interference at the signal ports. A termination structure at the end of the AMMIs and input and output tapering waveguides as a part of the wavelength splitters are designed and their performances are presented.

7.
Opt Express ; 23(11): 14018-26, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-26072771

ABSTRACT

We will demonstrate a stress-optic phase modulator in the passive SiN-based TriPleX platform using a layer of piezoelectric material. Regarding the stress-optic effect, the piezoelectric layer deposited on top of an optical waveguide is employed to control the phase of propagating light in the structure by applying an electrical field across the layer. In this work, it is demonstrated that the stress-optic effect lowers the power consumption by a factor of one million for quasi-DC operation and increases the modulation speed by three orders of magnitude, compared to currently used thermo-optic modulation in the TriPleX platform.

8.
Cell J ; 14(4): 314-7, 2013.
Article in English | MEDLINE | ID: mdl-23577312

ABSTRACT

UNLABELLED: Medicinal plants are presumed to be natural sources of antioxidants that protect organisms from oxidative stresses. The present investigation aims to study the anti-oxidative stress activity of the Stachys lavandulifolia (S. lavandulifolia) plant. This trial was conducted on 26 healthy human subjects. The study was done in a before after fashion. The included subjects were asked to consume the prepared infusion from 3 g aerial parts of S. lavandulifolia on a daily basis. Doses were administered in every morning and evening for 14 days. At the beginning and the end of the study, blood samples were acquired to determine the level of cellular lipid peroxidation and the total content of serum antioxidants. Biomarkers analyzed from samples obtained before start of treatment and 14 days post treatment, were subjected to paired t test analysis. Total blood antioxidants increased and reached from 2.3 ± 0.84 µmol/ml to 3.3 ± 0.54 µmol/ml. The lipid peroxidation reduced and reached from 8.38 ± 1.78 to 11.6 ± 2.64 nmol/ml. The results suggest that S. lavandulifolia possesses marked anti-oxidative stress activity and it can be useful as a supplement in the management of diseases related to oxidative stress ( REGISTRATION NUMBER: IRCT2013012210003N2).

SELECTION OF CITATIONS
SEARCH DETAIL
...