Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 20749, 2023 11 25.
Article in English | MEDLINE | ID: mdl-38007602

ABSTRACT

The importance of the parent vessel geometrical feature on the risk of cerebral aneurysm rupture is unavoidable. This study presents inclusive details on the hemodynamics of Internal carotid artery (ICA) aneurysms with different parent vessel mean diameters. Different aspects of blood hemodynamics are compared to find a reasonable connection between parent vessel mean diameter and significant hemodynamic factors of wall shear stress (WSS), oscillatory shear index (OSI), and pressure distribution. To access hemodynamic data, computational fluid dynamics is used to model the blood stream inside the cerebral aneurysms. A hemodynamic comparison of the selected cerebral aneurysm shows that the minimum WSS is reduced by about 71% as the parent vessel's mean diameter is increased from 3.18 to 4.48 mm.


Subject(s)
Aneurysm, Ruptured , Carotid Artery Diseases , Intracranial Aneurysm , Humans , Hemodynamics , Hydrodynamics , Stress, Mechanical
2.
Sci Rep ; 13(1): 20544, 2023 11 23.
Article in English | MEDLINE | ID: mdl-37996605

ABSTRACT

In this study, the role of sac section area and parent vessel diameter on the hemodynamic feature of the blood flow in selected internal carotid artery (ICA) aneurysms is comprehensively investigated. The changes of wall shear stress, pressure, and oscillatory shear index (OSI) of blood stream on the vessel for various aneurysms with coiling treatment. To attain hemodynamic factors, computational technique is used for the modeling of non-Newtonian transient blood flow inside the three different ICA aneurysms. Three different saccular models with various Parent vessel mean Diameter is investigated in this study. The achieved outcomes show that increasing the diameter of the parent vessel directly decreases the OSI value on the sac surface. In addition, the mean wall shear stress decreases with the increase of the parent vessel diameter.


Subject(s)
Carotid Artery Diseases , Intracranial Aneurysm , Humans , Carotid Artery, Internal , Hemodynamics/physiology , Stress, Mechanical
3.
Molecules ; 27(19)2022 Oct 03.
Article in English | MEDLINE | ID: mdl-36235078

ABSTRACT

This study correlated biomass heat capacity (Cp) with the chemistry (sulfur and ash content), crystallinity index, and temperature of various samples. A five-parameter linear correlation predicted 576 biomass Cp samples from four different origins with the absolute average relative deviation (AARD%) of ~1.1%. The proportional reduction in error (REE) approved that ash and sulfur contents only enlarge the correlation and have little effect on the accuracy. Furthermore, the REE showed that the temperature effect on biomass heat capacity was stronger than on the crystallinity index. Consequently, a new three-parameter correlation utilizing crystallinity index and temperature was developed. This model was more straightforward than the five-parameter correlation and provided better predictions (AARD = 0.98%). The proposed three-parameter correlation predicted the heat capacity of four different biomass classes with residual errors between -0.02 to 0.02 J/g∙K. The literature related biomass Cp to temperature using quadratic and linear correlations, and ignored the effect of the chemistry of the samples. These quadratic and linear correlations predicted the biomass Cp of the available database with an AARD of 39.19% and 1.29%, respectively. Our proposed model was the first work incorporating sample chemistry in biomass Cp estimation.


Subject(s)
Biocompatible Materials , Hot Temperature , Biomass , Sulfur , Temperature
4.
Sci Rep ; 12(1): 9615, 2022 06 10.
Article in English | MEDLINE | ID: mdl-35689030

ABSTRACT

This study uses the differential evolution optimization algorithm to adjust the coefficient of Arrhenius-shape correlation for calculating hydrogen (H2) solubility in alcohol-based media. The pre-exponential and exponential parts of this correlation are the functions of pressure and absolute temperature, respectively. Since this model has been validated using seventeen alcohol/hydrogen binary mixtures, it is the most generalized correlation in this regard. The proposed Arrhenius-shape correlation predicts 285 laboratory solubility measurements with the absolute average relative deviation (AARD%) of 3.28% and regression coefficient (R2) of 0.99589. The accuracy of the developed model has also been compared with two empirical correlations and three equations of state suggested in the literature. The Arrhenius-shape model has 15% and 50% smaller AARD than the most accurate empirical correlation and equation of state, respectively. Simulation findings demonstrate that all alcohol/hydrogen mixtures thermodynamically behave based on Henry's law. Hydrogen solubility in alcohols increases by increasing either pressure or temperature. 1-octanol has the maximum ability to absorb the H2 molecules.


Subject(s)
Ethanol , Hydrogen , 1-Octanol , Solubility , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...