Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 5217, 2024 Mar 03.
Article in English | MEDLINE | ID: mdl-38433251

ABSTRACT

Due to its widespread use in agriculture, atrazine has entered aquatic environments and thus poses potential risks to public health. Therefore, researchers have done many studies to remove it. Advanced reduction process (ARP) is an emerging technology for degrading organic contaminants from aqueous solutions. This study was aimed at evaluating the degradation of atrazine via sulfite/iodide/UV process. The best performance (96% of atrazine degradation) was observed in the neutral pH at 60 min of reaction time, with atrazine concentration of 10 mg/L and concentration of sulfite and iodide of 1 mM. The kinetic study revealed that the removal of atrazine was matched with the pseudo-first-order model. Results have shown that reduction induced by e aq - and direct photolysis dominated the degradation of atrazine. The presence of anions ( Cl - , CO 3 2 - and SO 4 2 - ) did not have a significant effect on the degradation efficiency. In optimal conditions, COD and TOC removal efficiency were obtained at 32% and 4%, respectively. Atrazine degradation intermediates were generated by de-chlorination, hydroxylation, de-alkylation, and oxidation reactions. Overall, this research illustrated that Sulfite/iodide/UV process could be a promising approach for atrazine removal and similar contaminants from aqueous solutions.

2.
Environ Sci Pollut Res Int ; 30(30): 75989-76001, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37233938

ABSTRACT

The health risk and burden of disease induced by exposure to benzene, toluene, ethylbenzene, and xylene (BTEX) in the outdoor air in Tehran, 2019 were assessed based on the data of five fixed stations with weekly BTEX measurements. The non-carcinogenic risk, carcinogenic risk, and disease burden from exposure to BTEX compounds were determined by hazard index (HI), incremental lifetime cancer risk (ILCR), and disability-adjusted life year (DALY), respectively. The average annual concentrations of benzene, toluene, ethylbenzene, and xylene in the outdoor air in Tehran were 6.59, 21.62, 4.68, and 20.88 µg/m3, respectively. The lowest seasonal BTEX concentrations were observed in spring and the highest ones occurred in summer. The HI values of BTEX in the outdoor air in Tehran by district ranged from 0.34 to 0.58 (less than one). The average ILCR values of benzene and ethylbenzene were 5.37 × 10-5 and 1.23 × 10-5, respectively (in the range of probable increased cancer risk). The DALYs, death, DALY rate (per 100,000 people) and death rate (per 100,000 people) induced by BTEX exposure in the outdoor air in Tehran were determined to be 180.21, 3.51, 2.07, and 0.04, respectively. The five highest attributable DALY rates in Tehran by district were observed in the districts 10 (2.60), 11 (2.43), 17 (2.41), 20 (2.32), and 9 (2.32), respectively. The corrective measures such as controlling road traffic and improving the quality of vehicles and gasoline in Tehran could reduce the burden of disease from BTEX along with the health effects of other outdoor air pollutants.


Subject(s)
Air Pollutants , Neoplasms , Humans , Benzene/analysis , Xylenes/analysis , Toluene/analysis , Iran , Environmental Monitoring , Benzene Derivatives/analysis , Air Pollutants/analysis , Risk Assessment
3.
Int J Environ Health Res ; : 1-12, 2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36446029

ABSTRACT

Waterborne organisms in marine water generally originate from untreated wastewater discharged into the sea. The presence of numerous leisure beaches in Mahmoudabad city, Iran, annually attracts thousands of tourists from all over the country to participate in recreational swimming activities. This study probabilistically characterized the health risks associated with recreational swimming engendered by waterborne pathogens, such as intestinal enterococci and Escherichia coli (E. coli) at 15 sampling points along the beaches of the study using quantitative microbial risk assessment (QMRA). The mean annual infection risk of E. coli in children and adults was 0.424 and 0.229, respectively. The respective risk in terms of enterococci was 0.999 and 0.997, which were higher than the level recommended by the WHO and EPA. The results show that the risk of infection for children was higher than adults. Related authorities have to consider measures to improve environmental quality to protect tourists' and residents' well-being.

SELECTION OF CITATIONS
SEARCH DETAIL
...