Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Colloids Surf B Biointerfaces ; 179: 495-504, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-31005745

ABSTRACT

In the present study, the tri-layer nanofibers were synthesized via triaxial electrospinning process to control the sustained delivery of Doxorubicin (DOX), Paclitaxel (PTX) and 5- fluorouracil (5-FU) anticancer drugs from nanofibers. The 5-FU molecules were incorporated into the core solution (chitosan/polyvinyl alcohol (CS/PVA)) to fabricate the CS/PVA/5-FU inner layer of nanofibers. The intermediate layer was prepared from poly(lactic acid)/chitosan (PLA/CS) nanofibers. The DOX and PTX molecules were initially loaded into the g-C3N4 nanosheets and following were incorporated into the PLA/CS solution to fabricate the outer layer of nanofibers. The synthesized nanosheets and nanofibers were characterized using XRD, SEM, TEM and UV-vis analysis. The PLA/PVA/CS/FU/g-C3N4/DOX/PTX single layer nanofibers were also synthesized via electrospinning method. The drug loading efficiency, degradation rate and anticancer drugs release profiles from single layer and tri-layer nanofibers were investigated under various intermediate and shell layer thicknesses. The pharmacokinetic studies were performed to understand the drugs release mechanism from nanofibers. The cell viability and cell attachment of drug loaded single layer and tri-layer nanofibers toward the MCF-7 breast cancer cells were examined to achieve an optimum nanofibrous formulation for the breast cancer treatment. The obtained results revealed the high activity of tri-layer nanofibers for the breast cancer cells killing.


Subject(s)
Breast Neoplasms/drug therapy , Chitosan/chemistry , Doxorubicin/therapeutic use , Fluorouracil/therapeutic use , Nanofibers/chemistry , Nitriles/chemistry , Paclitaxel/therapeutic use , Polyesters/chemistry , Cell Adhesion/drug effects , Cell Survival/drug effects , Delayed-Action Preparations/pharmacokinetics , Delayed-Action Preparations/pharmacology , Delayed-Action Preparations/therapeutic use , Doxorubicin/pharmacokinetics , Doxorubicin/pharmacology , Drug Liberation , Female , Fluorouracil/pharmacokinetics , Fluorouracil/pharmacology , Graphite/chemistry , Humans , Kinetics , MCF-7 Cells , Nanofibers/ultrastructure , Paclitaxel/pharmacokinetics , Paclitaxel/pharmacology , X-Ray Diffraction
2.
J Hazard Mater ; 368: 10-20, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30658159

ABSTRACT

In the present study, the UiO-66-NH2 MOF synthesized by microwave heating method was incorporated into the PAN/chitosan nanofibers for the removal of Pb(II), Cd(II) and Cr(VI) ions through the adsorption and membrane filtration processes. The synthesized MOFs and nanofibers were characterized using XRD, BET, FTIR, SEM, and DSC analysis. The effect of UiO-66-NH2 MOF content (0-15 wt.%), pH (2-7), contact time(5-90 min), metal ions initial concentration (20-1000 mg/L) and temperature (25-45 °C) was studied on the metal ions adsorption using PAN/chitosan/UiO-66-NH2 nanofibrous adsorbent. The kinetic, isotherm and thermodynamic parameters were evaluated to understand the metal ions adsorption mechanism using nanofibers. The Pseudo-second-order kinetic and Redlich-Peterson isotherm model were well described the experimental sorption data. In the heavy metal ions membrane filtration process, the different parameters such as MOF concentration (2-15 wt.%), membrane thickness (10-70 µm), metal ions concentration (5-50 mg/L), temperature (25-45 °C) and filtration time (1-24 h) were investigated on the performance of PVDF/ PAN/chitosan/UiO-66-NH2 nanofibrous membrane toward metal ions removal. The high water flux and high metal ions removal within 18 h filtration time showed the high potential of PVDF/ PAN/chitosan/UiO-66-NH2 membrane for the removal of metal ions from aqueous solutions.

SELECTION OF CITATIONS
SEARCH DETAIL