Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ther Adv Respir Dis ; 18: 17534666241253990, 2024.
Article in English | MEDLINE | ID: mdl-38904297

ABSTRACT

Cystic fibrosis (CF) is an autosomal recessive disease caused by the inheritance of two mutant cystic fibrosis transmembrane conductance regulator (CFTR) alleles, one from each parent. Autosomal recessive disorders are rarely associated with germline mutations or mosaicism. Here, we propose a case of paternal germline mutation causing CF. The subject also had an identifiable maternal mutant allele. We identified the compound heterozygous variants in the proband through Sanger sequencing, and in silico studies predicted functional effects on the protein. Also, short tandem repeat markers revealed the de novo nature of the mutation. The maternal mutation in the CFTR gene was c.1000C > T. The de novo mutation was c.178G > A, p.Glu60Lys. This mutation is located in the lasso motif of the CFTR protein and, according to in silico structural analysis, disrupts the interaction of the lasso motif and R-domain, thus influencing protein function. This first reported case of de novo mutation in Asia has notable implications for molecular diagnostics, genetic counseling, and understanding the genetic etiology of recessive disorders in the Iranian population.


Identifying the first de novo mutation in the cystic fibrosis transmembrane conductance regulator protein in Iran: a case report with insights from microsatellite markersA child can develop Cystic Fibrosis (CF) if both parents pass on mutated genes. In some rare cases, new genetic mutations occur spontaneously, causing CF. This report discusses a unique case where a child has one gene with a spontaneous mutation and inherits another gene mutation from the mother. We used a method called Sanger sequencing to find the two different gene changes in the affected person. We also used computer analysis to predict how these changes might affect the protein responsible for this genetic disease. To confirm that the child's new change is not inherited, we used a type of genetic marker called microsatellite markers. The mutation inherited from the mother and the new spontaneous mutation resulted in a unique change in the responsible protein. This mutation is located in a specific part of the protein called the lasso motif. Our computer simulations show that this mutation disrupts the interaction between the lasso motif and another part of the protein called the R-domain, which ultimately affects the protein's function. This case is significant because it is the first reported instance of a de novo mutation causing CF in Asia. It has important implications for genetic testing, counseling, and understanding how recessive genetic disorders like CF occur within the Iranian population.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Microsatellite Repeats , Female , Humans , Male , Computer Simulation , Cystic Fibrosis/genetics , Cystic Fibrosis/diagnosis , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , DNA Mutational Analysis , Genetic Predisposition to Disease , Germ-Line Mutation , Iran , Phenotype , Child, Preschool , Infant
2.
Front Genet ; 14: 1140034, 2023.
Article in English | MEDLINE | ID: mdl-37274793

ABSTRACT

Objectives: Cystic fibrosis (CF) is the most prevalent autosomal recessive disorder among Caucasians. Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene cause this pathology. We, therefore, aimed to describe the CFTR mutations and their geographical distribution in Iran. Method: The mutation spectrum for 87 families from all Iranian ethnicities was collected using ARMS PCR, Sanger sequencing, and MLPA. Results: Mutations were identified in 95.8% of cases. This dataset revealed that the most frequent mutations in the Iranian population were F508del, c.1000C>T, c.1397C>G, c.1911delG, and c.1393-1G>A. In addition, we found weak evidence for Turkey being the possible geographical pathway for introducing CFTR mutations into Iran by mapping the frequency of CFTR mutations. Conclusion: Our descriptive results will facilitate the genetic detection and prenatal diagnosis of cystic fibrosis within the Iranian population.

3.
Iran Biomed J ; 26(5): 398-405, 2022 11 01.
Article in English | MEDLINE | ID: mdl-35468710

ABSTRACT

Background: Cystic fibrosis (CF) is the most common heredity disease among the Caucasian population. More than 350 known pathogenic variations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene (NM_000492.4) cause CF. Herein, we report the outcome of our investigation in two unrelated Iranian families with CF patients. Methods: We conducted phenotypic examination, segregation, linkage analysis, and CFTR gene sequencing to define causative mutations. Results: We found two novel mutations in the present study. The first one was a deletion causing frameshift, c.299delT p.(Leu100Profs*7), and the second one was a missense mutation, c.1857G>T, at nucleotide binding domain 1 of the CFTR protein. Haplotype segregation data supported our new mutation findings. Conclusion: Findings of this study expand the spectrum of CFTR pathogenic variations and can improve prenatal diagnosis and genetic counseling for CF.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Humans , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/genetics , Iran , Computational Biology , Mutation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...