Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 26(7): 107215, 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37496674

ABSTRACT

Developing an effective therapy to overcome carbapenemase-positive Klebsiella pneumoniae (CPKp) is an important therapeutic challenge that must be addressed urgently. Here, we explored a Ca-EDTA combination with aztreonam or ceftazidime-avibactam in vitro and in vivo against diverse CPKp clinical isolates. The synergy testing of this study demonstrated that novel aztreonam-Ca-EDTA or ceftazidime-avibactam-Ca-EDTA combination was significantly effective in eliminating planktonic and mature biofilms in vitro, as well as eradicating CPKp infections in vivo. Both combinations revealed significant therapeutic efficacies in reducing bacterial load in internal organs and protecting treated mice from mortality. Conclusively, this is the first in vitro and in vivo study to demonstrate that novel aztreonam-Ca-EDTA or ceftazidime-avibactam-Ca-EDTA combinations provide favorable efficacy and safety for successful eradication of carbapenemase-producing Klebsiella pneumoniae planktonic and biofilm infections.

2.
Genes (Basel) ; 13(10)2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36292564

ABSTRACT

Tetracycline-inducible systems are widely used control elements for mammalian gene expression. Despite multiple iterations to improve inducibility, their use is still compromised by basal promoter activity in the absence of tetracyclines. In a mammalian system, we previously showed that the introduction of the G72V mutation in the rtTA-M2 tetracycline activator lowers the basal level expression and increases the fold-induction of multiple genetic elements in a long chimeric antigen receptor construct. In this study, we confirmed that the G72V mutation was effective in minimising background expression in the absence of an inducer, resulting in an increase in fold-expression. Loss of responsiveness due to the G72V mutation was compensated through the incorporation of four sensitivity enhancing (SE) mutations, without compromising promoter tightness. However, SE mutations alone (without G72V) led to undesirable leakiness. Although cryptic splice site removal from rtTA did not alter the inducible control of the luciferase reporter gene in this simplified vector system, this is still recommended as a precaution in more complex multi-gene elements that contain rtTA. The optimized expression construct containing G72V and SE mutations currently provides the best improvement of fold-induction mediated by the rtTA-M2 activator in a mammalian system.


Subject(s)
Receptors, Chimeric Antigen , Tetracycline , Animals , Tetracycline/pharmacology , Receptors, Chimeric Antigen/genetics , RNA Splice Sites , Trans-Activators/genetics , Tetracyclines/pharmacology , Anti-Bacterial Agents/therapeutic use , Mammals/genetics
3.
JMIR Bioinform Biotech ; 3(1): e36100, 2022.
Article in English | MEDLINE | ID: mdl-35891920

ABSTRACT

Background: Since the first appearance of SARS-CoV-2 in China in December 2019, the world witnessed the emergence of the SARS-CoV-2 outbreak. Due to the high transmissibility rate of the virus, there is an urgent need to design and develop vaccines against SARS-CoV-2 to prevent more cases affected by the virus. Objective: A computational approach is proposed for vaccine design against the SARS-CoV-2 spike (S) protein, as the key target for neutralizing antibodies, and envelope (E) protein, which contains a conserved sequence feature. Methods: We used previously reported epitopes of S protein detected experimentally and further identified a collection of predicted B-cell and major histocompatibility (MHC) class II-restricted T-cell epitopes derived from E proteins with an identical match to SARS-CoV-2 E protein. Results: The in silico design of our candidate vaccine against the S and E proteins of SARS-CoV-2 demonstrated a high affinity to MHC class II molecules and effective results in immune response simulations. Conclusions: Based on the results of this study, the multiepitope vaccine designed against the S and E proteins of SARS-CoV-2 may be considered as a new, safe, and efficient approach to combatting the COVID-19 pandemic.

SELECTION OF CITATIONS
SEARCH DETAIL
...