Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Water Sci Technol ; 87(6): 1376-1392, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37001155

ABSTRACT

An invaluable utilization approach for industrial wastes is to employ them as effective adsorbents for environmental pollutants. This study aimed to investigate the phosphorus (P) adsorption behavior of coal wastes and zeolite in three forms of pristine powder (CP and ZP), nanoparticles (CNP and ZNP), and Fe (III)-modified nanoparticles (MCNP and MZNP). The adsorbents were characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS) analyses. The effects of pH, initial P concentration, and contact time were studied under batch mode. Results showed an optimum pH range of 2-6 for the P adsorption process. The pseudo-second-order kinetic model and the Langmuir isotherm described the P adsorption data well. The P adsorption capacity of the studied adsorbents was enhanced after modifications. However, the coal-based modified adsorbents represented higher P adsorption performances rather than the zeolite ones. The maximum P adsorption capacity (Qmax) values were obtained as 0.36, 3.23, and 30.48 mg g-1 for CP, CNP, and MCNP, and 0.80, 2.84, and 6.99 mg g-1 for ZP, ZNP, and MZNP, respectively. The surface complexation, ligand exchange, and electrostatic attraction processes were identified as the main P adsorption mechanisms by the studied adsorbents.


Subject(s)
Water Pollutants, Chemical , Zeolites , Zeolites/chemistry , Solid Waste , Adsorption , Coal , Phosphorus , Water Pollutants, Chemical/chemistry , Hydrogen-Ion Concentration , Kinetics , Water , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...