Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Anal Methods ; 13(23): 2603-2611, 2021 06 21.
Article in English | MEDLINE | ID: mdl-34027952

ABSTRACT

We report a colorimetric sensor for the detection of Hg2+ ions utilizing surface-modified gold nanoparticles. Gold nanoparticles (GNPs) were synthesized by direct reduction and were subsequently functionalized using Schiff base ligands. Schiff base ligands as electron transfer agents have been frequently used for the determination of heavy metal ions. From the spectroscopic analysis, it was found that the mechanism could be defined as coordination between azomethine nitrogen and the carbonyl oxygen of the ligand with Hg2+ ions. The affinity of Hg2+ ions towards the bidentate Schiff base on the GNPs result from their self-aggregation and investigated to be a powerful asset for the development of Hg2+ ion-selective sensors, which is accompanied by a visible color change from pink to purple or can be detect by UV-Vis spectroscopy. The optimized structures and binding mechanisms were supported with a high correlation and agreement via spectroscopy and DFT calculations. These simple colorimetric tests can be extended for the rapid pre-screening of a wide variety of heavy metal ions for onsite detection and mitigation.


Subject(s)
Mercury , Metal Nanoparticles , Colorimetry , Gold , Ions , Schiff Bases
2.
J Mol Model ; 20(2): 2086, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24522378

ABSTRACT

A density functional theory (DFT) method (periodic DMol(3)) with full geometry optimization was used to study the adsorption of tautomeric forms of tetrazole on anatase TiO2 (101), (100), and (001) surfaces. It was found that the adsorption of tetrazole on the TiO2 surfaces does not proceed via a dissociative process, and negative shifts in the Fermi level of TiO2 were noted upon N-containing heterocycle adsorption. The configuration of the tetrazole during adsorption and the corresponding adsorption energies on different surfaces and sites were estimated. In addition, it was found that tetrazole may be adsorbed on TiO2 surfaces through an interaction between a cation on the surface and a lone pair on the N1 or N2 atom of the tetrazole molecule. The results indicate that the adsorption of tetrazole through the N2 position (leading to the 1H tautomer) on an anatase TiO2 surface is favored over adsorption through the N1 position. In addition, it was observed that the photocatalytic activity of tetrazole-doped TiO2 is higher than that of a pure anatase TiO2 surface.


Subject(s)
Specific Gravity , Tetrazoles/chemistry , Titanium/chemistry , Adsorption , Coloring Agents , Quantum Theory , Solar Energy , Surface Properties , Titanium/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL