Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biomicrofluidics ; 13(3): 034117, 2019 May.
Article in English | MEDLINE | ID: mdl-31431813

ABSTRACT

Inertial microfluidics represents a powerful new tool for accurately positioning cells and microparticles within fluids for a variety of biomedical, clinical, and industrial applications. In spite of enormous advancements in the science and design of these devices, particularly in curved microfluidic channels, contradictory experimental results have confounded researchers and limited progress. Thus, at present, a complete theory which describes the underlying physics is lacking. We propose that this bottleneck is due to one simple mistaken assumption-the locations of inflection points of the Dean velocity profile in curved microchannels are not fixed, but can actually shift with the flow rate. Herein, we propose that the dynamic distance (δ) between the real equilibrium positions and their nearest inflection points can clearly explain several (previously) unexplained phenomena in inertial microfluidic systems. More interestingly, we found that this parameter, δ, is a function of several geometric and operational parameters, all of which are investigated (in detail) here with a series of experiments and simulations of different spiral microchannels. This key piece of understanding is expected to open the door for researchers to develop new and more effective inertial microfluidic designs.

2.
Biomicrofluidics ; 13(3): 034118, 2019 May.
Article in English | MEDLINE | ID: mdl-31431814

ABSTRACT

Curved microchannels allow controllable microparticle focusing, but a full understanding of particle behavior has been limited-even for simple rectangular and trapezoidal shapes. At present, most microfluidic particle separation literature is dedicated to adding "internal" complexity (via sheath flow or obstructions) to relatively simple cross-sectional channel shapes. We propose that, with sufficient understanding of particle behavior, an equally viable pathway for microparticle focusing could utilize complex "external" cross-sectional shapes. By investigating three novel, complex spiral microchannels, we have found that it is possible to passively focus (6, 10, and 13 µm) microparticles in the middle of a convex channel. Also, we found that in concave and jagged channel designs, it is possible to create multiple, tight focusing bands. In addition to these performance benefits, we report an "additive rule" herein, which states that complex channels can be considered as multiple, independent, simple cross-sectional shapes. We show with experimental and numerical analysis that this new additive rule can accurately predict particle behavior in complex cross-sectional shaped channels and that it can help to extract general inertial focusing tendencies for suspended particles in curved channels. Overall, this work provides simple, yet reliable, guidelines for the design of advanced curved microchannel cross sections.

3.
Ultrason Sonochem ; 21(2): 663-73, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24409466

ABSTRACT

Nanostructured CuO-ZnO-Al2O3/HZSM-5 was synthesized from nitrate and acetate precursors using ultrasound assisted co-precipitation method under different irradiation powers. The CuO-ZnO-Al2O3/HZSM-5 nanocatalysts were characterized using XRD, FESEM, BET, FTIR and EDX Dot-mapping analyses. The results indicated precursor type and irradiation power have significant influences on phase structure, morphology, surface area and functional groups. It was observed that the acetate formulated CuO-ZnO-Al2O3/HZSM-5 nanocatalyst have smaller CuO crystals with better dispersion and stronger interaction between components in comparison to nitrate based nanocatalysts. Ultrasound assisted co-precipitation synthesis method resulted in nanocatalyst with more uniform morphology compared to conventional method and increasing irradiation power yields smaller particles with better dispersion and higher surface area. Additionally the crystallinity of CuO is lower at high irradiation powers leading to stronger interaction between metal oxides. The nanocatalysts performance were tested at 200-300 °C, 10-40 bar and space velocity of 18,000-36,000 cm(3)/g h with the inlet gas composition of H2/CO = 2/1 in a stainless steel autoclave reactor. The acetate based nanocatalysts irradiated with higher levels of power exhibited better reactivity in terms of CO conversion and DME yield. While there is an optimal temperature for CO conversion and DME yield in direct synthesis of DME, CO conversion and DME yield both increase with the pressure increase. Furthermore ultrasound assisted co-precipitation method yields more stable CuO-ZnO-Al2O3/HZSM-5 nanocatalyst while conventional precipitated nanocatalyst lost their activity ca. 18% and 58% in terms of CO conversion and DME yield respectively in 24 h time on stream test.

SELECTION OF CITATIONS
SEARCH DETAIL
...