Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 8(12): e81494, 2013.
Article in English | MEDLINE | ID: mdl-24339939

ABSTRACT

BACKGROUND: Airway wall remodelling is a key pathology of asthma. It includes thickening of the airway wall, hypertrophy and hyperplasia of bronchial smooth muscle cells (BSMC), as well as an increased vascularity of the sub-epithelial cell layer. BSMC are known to be the effector cells of bronchoconstriction, but they are increasingly recognized as an important source of inflammatory mediators and angiogenic factors. OBJECTIVE: To compare the angiogenic potential of BSMC of asthmatic and non-asthmatic patients and to identify asthma-specific angiogenic factors. METHODS: Primary BSMC were isolated from human airway tissue of asthmatic and non-asthmatic patients. Conditioned medium (CM) collected from BSMC isolates was tested for angiogenic capacity using the endothelial cell (EC)-spheroid in vitro angiogenesis assay. Angiogenic factors in CM were quantified using a human angiogenesis antibody array and enzyme linked immunosorbent assay. RESULTS: Induction of sprout outgrowth from EC-spheroids by CM of BSMC obtained from asthma patients was increased compared with CM of control BSMC (twofold, p < 0.001). Levels of ENA-78, GRO-α and IL-8 were significantly elevated in CM of BSMC from asthma patients (p < 0.05 vs. non-asthmatic patients). SB 265610, a competitive antagonist of chemokine (CXC-motif) receptor 2 (CXCR2), attenuated the increased sprout outgrowth induced by CM of asthma patient-derived BSMC. CONCLUSIONS: BSMC isolated from asthma patients exhibit increased angiogenic potential. This effect is mediated through the CXCR2 ligands (ENA78, GRO-α and IL-8) produced by BSMC. IMPLICATIONS: CXCR2 ligands may play a decisive role in directing the neovascularization in the sub-epithelial cell layers of the lungs of asthma patients. Counteracting the CXCR2-mediated neovascularization by pharmaceutical compounds may represent a novel strategy to reduce airway remodelling in asthma.


Subject(s)
Asthma/pathology , Asthma/physiopathology , Bronchi/pathology , Chemokines, CXC/metabolism , Myocytes, Smooth Muscle/metabolism , Neovascularization, Pathologic , Adult , Asthma/metabolism , Chemokine CXCL1/metabolism , Chemokine CXCL5/metabolism , Female , Humans , Interleukin-8/metabolism , Ligands , Male , Middle Aged , Myocytes, Smooth Muscle/drug effects , Phenylurea Compounds/pharmacology , Receptors, Interleukin-8B/antagonists & inhibitors , Receptors, Interleukin-8B/metabolism , Triazoles/pharmacology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...