Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chemphyschem ; 16(13): 2789-2796, 2015 Sep 14.
Article in English | MEDLINE | ID: mdl-26205986

ABSTRACT

Electrochemical processes in highly viscous media such as poly(ethylene glycol) (herein PEG200) are interesting for energy-conversion applications, but problematic due to slow diffusion causing low current densities. Here, a hydrodynamic microgap experiment based on Couette flow is introduced for an inlaid disc electrode approaching a rotating drum. Steady-state voltammetric currents are independent of viscosity and readily increased by two orders of magnitude with further potential to go to higher rotation rates and nanogaps. A quantitative theory is derived for the prediction of currents under high-shear Couette flow conditions and generalised for different electrode shapes. The 1,1'-ferrocene dimethanol redox probe in PEG200 (D=1.4×10-11 m2 s-1 ) is employed and data are compared with 1) a Levich-type equation expressing the diffusion-convection-limited current and 2) a COMSOL simulation model providing a potential-dependent current trace.

2.
Chem Commun (Camb) ; 51(52): 10427-30, 2015 Jul 04.
Article in English | MEDLINE | ID: mdl-26027654

ABSTRACT

We present a method for the polymerization of low molecular weight hydrogelators to form polymers with unique structures. Carbazole-protected amino acids are shown to form hydrogels by self-assembly into fibrous structures. We show that is possible to directly electropolymerize the hydrogels. This results in the formation of microporous electrochromic polymers with distinctive structure. Polymers formed from the same gelator without the pregelation step show more compact structures. This method opens the possibility of creating polymers templated from pre-assembled gels that have the potential to be used in a wide range of applications.

3.
ACS Appl Mater Interfaces ; 7(28): 15458-65, 2015 Jul 22.
Article in English | MEDLINE | ID: mdl-26104182

ABSTRACT

Covalently grafted KolliphorEL (a poly(ethylene glycol)-based transporter molecule for hydrophobic water-insoluble drugs; MW, ca. 2486; diameter, ca. 3 nm) at the surface of a glassy-carbon electrode strongly affects the rate of electron transfer for aqueous redox systems such as Fe(CN)6(3-/4-). XPS data confirm monolayer grafting after electrochemical anodization in pure KolliphorEL. On the basis of voltammetry and impedance measurements, the charge transfer process for the Fe(CN)6(3-/4-) probe molecule is completely blocked after KolliphorEL grafting and in the absence of a "guest". However, in the presence of low concentrations of suitable ferrocene derivatives as guests, mediated electron transfer across the monolayer via a shuttle mechanism is observed. The resulting amplification of the ferrocene electroanalytical signal is investigated systematically and compared for five ferrocene derivatives. The low-concentration electron shuttle efficiency decreases in the following sequence: (dimethylaminomethyl)ferrocene > n-butyl ferrocene > ferrocene dimethanol > ferroceneacetonitrile > ferroceneacetic acid.

4.
Phys Chem Chem Phys ; 17(17): 11260-8, 2015 May 07.
Article in English | MEDLINE | ID: mdl-25836325

ABSTRACT

"Amplified" electron transfer is observed purely based on electron transfer kinetic effects at modified carbon surfaces. An anodic attachment methodology is employed to modify the surface of glassy carbon or boron doped diamond electrodes with poly-ethylene glycols (PEGs) for polymerisation degrees of n = 4.5 to 9.1 (PEG200 to PEG400). Voltammetry and impedance data for aqueous Fe(CN)6(3-/4-) suggest systematic PEG structure-dependent effects on the standard rate constant for heterogeneous electron transfer as a function of PEG deposition conditions and average polymer chain length. Tunnel distance coefficients are polymerisation degree dependent and estimated for shorter PEG chains, ß = 0.17 Å(-1) for aqueous Fe(CN)6(3-/4-), consistent with a diffuse water-PEG interface. In contrast, electron transfer to 1,1'-ferrocene-dimethanol (at 1 mM concentration) appears un-impeded by PEG grafts. Mediated or "amplified" electron transfer to Fe(CN)6(3-/4-) based on the 1,1'-ferrocene-dimethanol redox shuttle is observed for both oxidation and reduction with estimated bimolecular rate constants for homogeneous electron transfer of kforward = 4 × 10(5) mol dm(3) s(-1) and kbackward = 1 × 10(5) mol dm(3) s(-1). Digital simulation analysis suggests an additional resistive component within the PEG graft double layer.

SELECTION OF CITATIONS
SEARCH DETAIL
...